
Live Deployment of the UI is present at: Live UI

To install the app locally, jump to: User Interface

Data Creation
We started with GTSRB Dataset (dataset.tar.gz) as the base.

After some literature survey, we found TSRD Dataset and took 5 new classes from it. Images from
the common classes of TSRD and GTSRB were also added to the base. Thus, we obtained an
augmented dataset (datasetaug.tar.gz)

Several transformations were applied to Training, Validation as well as the Testing images of
DatasetAug to get DatasetDiff (datasetdiff.tar.gz)

Finally, to increase difficulty even more, we applies transformations with even higher probabilities
and added ~4000 new transformed images as well to the Test set to get DatasetTesting
(datasettesting.tar.gz)

Dataset Types
dataset.tar.gz : Vanilla GTSRB [43 Classes]

datasetaug.tar.gz : GTSRB augmented with TSRD [48 Classes]

datasetdiff.tar.gz : Difficult Dataset [Transformed Test and Train Images]

datasettesting.tar.gz : Very Difficult Dataset [Even more transformed Test], more transformed
images added to the Test set as well

Experiments and Evaluation
This section describes our entire development process in chronological order.

[Row X] refers to the Xth row in the model statistics table given at the end.

https://boschtsr.ml/

We start with dataset.tar.gz and obtain benchmark scores. [Row 19]

After literature survey, we added 5 classes from TSRD dataset. Moreover, images that were
common to both the Datasets were also added to the base dataset to get datasetaug.tar.gz

UI was created with various features (see UI features and guide).

In order to make the dataset more difficult, we transform the test images using several
transforms with varying probabilities. Around 4000 images were also added with similar
transforms and even higher probabilities to increase the number of augmented images.

Now we test the benchmark model on this dataset. [Row 20]

Clearly, the F1 score obtained is very poor. The scores obtained were visualised using the
features of the UI.

From the data obtained, there were three tyes of issues found in the misclassified images:

Presence of images from the extra 5 classes (out of distribution)

Many images were transformed (blurred, shifted, rotated, data loss, etc.)

Some images are fine in the sense that they can be correctly classified by a human but the
model failed to perform well on those.

This is how we draw the above conclusions using the UI:

We can see all the misclassified images and the metrics in the UI itself and thus, can
manually identify the reasons of failure as well.

The UI has the ability to visualise classes (cluster graphs) and tell the user if such is the case.
This helps in dealing determining the presence of images from new classes. Additionally, we
try to further extend this functionality to detecting new classes based on cluster entropy.

Firstly, t-SNE embeddings of the new images are generated, and the existing model is tested
on the new images. Clusters with high entropy are predicted as new classes with reasonable
confidence. However, this approach is only intended to help the user speedup the addition
of these new images into the existing dataset.

In order to increase interpretability of the results, the prediction values and the image itself
is used to generate an anchor which is basically a mask that, if applied to any image will
generate the same prediction as it did right now. If the image is classified correctly, the
anchor completely captures our region of interest. In misclassified images, we find that the
anchor captures irrelevant parts of the image.

We also generate Integrated Gradients that help us in identifying the contributions of each
pixel of the image to the recommendation generated by the model.

Once we find the reasons/types of failures, we can think of steps to counter those problems:

In order to deal with presence of new classes, we have 2 approaches:

Train on all classes from scratch [Row 1, 2 and 9]: A very obvious but un-scalable
solution. As the dataset increases, the time taken per epoch will greatly increase.
Training a model on the entire dataset takes a lot of time and thus, we would like a
better approach for the same. This is also a very wasteful approach as all the time spent
on training a model for 43 classes (the benchmark model) is wasted.
Incremental Learning: This is what we feel is the better option. In this case, we take the
model trained on 43 classes, replace the last layer (softmax classifier with 43 weights)
with a new softmax classifier with 48 weights, having same first 43 weights. We freeze
all the layers of this new model except the last 5 weights of the last layer and train it on
examples from the new classes for a few epochs (1 to 2). After this, the model is trained
for about 10 epochs on the train dataset consisting of all 48 classes.
An important thing to notice here is, the incremental learning model trained for about
26 epochs [Row 16] is able to achieve performance close to a model trained from
scratch for about 83 epochs [Row 7]. The ability to build on previous knowledge is a
very important requirement for scalability. [Row 14 & 17, Row 15 & 18] show that the
trade-off is worth it.

In order to improve the model to deal with images that reflect real life scenarios, we have 2
options:

Change the training dataset by applying transforms to it and create a new dataset, but
as one can see from datasetdiff.tar.gz , this approach is not that appealing.
Another option is to integrate the ability of applying transforms to the training images
in the model itself. This is different from the previous approach as at each epoch,
random transformations are applied to the entire training and validation set and as a
result, the model almost never sees the same image twice as well as is able to capture a
large number of image-transform permutations. The superiority of this approach is
visible from [Row 1 & 4, Row 2 & 5].

If we observe the statistics, we can conclude that:

Using random transforms as a part of the model itself improves the performance not only
on the dataset that has transformed images but also, the Vanilla/Augmented dataset which
has images that have not been transformed. Thus, we integrated it in the model itself.

Additional Experiments
This section details some additional approaches that we explored.

Initially, we experimented with LIME to provide some interpretable functionality to the model.
However, Integrated Gradients and Anchors were found to be much more informative. Thus, this
is what we settled with.

In order to extend the functionality of adding classes to try to accomodate unlabeled images, we
first attempted to train out-of-distribution detectors, with the aim of trying to distinguish
between traffic signs that the model had been trained on and signs that belonged to no class.
Two papers were implemented:

i. Outlier Exposure - The method tunes the mode again by minimizing a custom loss function
which essentialy teaches the model the differentiating factors between the in-distribution
and out-distribution. The loss function used doesn't affect the original classification much.
However, here the Out distribution used is TSRD, also a traffic dataset which we think is too
close to the original database. OOD works better in differentiating between say a traffic sign
and a dog, not between two traffic signs. Hence, satisfactory results were not obtained.

ii. ODIN - Applies pre-processing in terms of adding adversarial noise to the input and
temperature scaling to softmax function. The ideal result should be poorer confidence for
the OOD images and therefore a way to threshold for OOD. Its also done for calibration of
model so that the model is not overconfident. The confidence for OOD increased and for in-
distribution images decreased. This was the opposite of the desired output. We believe that
the implementation worked more on the caibration part rather than OOD.

Since the above approaches didn't pan out, we resorted to the cluster entropy based approach.
The user can create an "Extra" class - a folder to store images that have currently not been
labeled confidently. Once a decent amount of images accumulate in this class, the user can
choose to use the cluster visualizations for these images and determine the presence of new
classes with reasonable confidence.

As detailed in the above section, new classes are integrated with incremental learning, and most
of the augmented images are handled by in-model augmentations. However, as can be seen in
the UI, some misclassified images remain, of which almost all are either heavily blurred or have
large proportion of pixel dropouts. The misclassified images that are not human-interpretable
are not valuable to the model and hence we consider deleting these images from the dataset
entirely. In order to handle the remaining mistakes and move further towards human-level
performance, we considered the following approaches:

From a perspective of feedback learning, we tested the following approach for artificial
image generation for misclassified images

We trained a Conditional VAE for generating images on the training data set of 43
classes. The images generated in such manner were clearly distinguishable from the
realistic images, the quality was poor as suggested by high FID value. Hence, a GAN
based approach was more suitable because the Discriminator does exactly the work of
forcing the generator to generate high quality realistic images.

We used a class conditioned StyleGAN2 with Adaptive Discriminator Augmentation. The
motivation for this was the non availability of a very large training corpus which GANs
generally require. ADA helps the GAN to generate good quality images with lesser data.
Images generated using StyleGAN2 had considerably higher quality with low FID value.

Our idea is basically to generate similar images around a misclassified input and train our
classification model on these images. This can be done using projecting the target
misclassified image into the latent vector space of the Generator and then sampling latent
vectors close to the projected vector. This allows us to get multiple images similar to the
original misclassified images on which we can further train the classifier. This led to some
individual class based increase in f1 score. The results were a bit inconclusive and needed
more improvement at the time of submission, we plan to demonstrate the results in the
presentation. This approach is independent of the classification model used and can be in a
manner of feedback learning on the model.

To determine the reasons for misclassification, we use the anchor algorithm to generate
superpixels resulting in the high probability of the wrong class. Anchors provide local
explanations for a particular prediction by generating perturbations around the given image.
The explanations generated by anchors were image-dependent and did not provide much
insight into the network working. But these explanations provided information about the
image segments, which were similar to other classes and ultimately led to misclassification.

To generate images close to misclassified images using the class representative, we tried to
generate images using activation maximization approach. This method involves generating
images that led to high probability of a particular class. This is achieved by modifying the
pixel values until it has highest activation for that particular class. Using this method, we
generated masks that led to high probabilities for each class. We superimposed this mask
over an image from another class which was correctly classified with high confidence
originally. So this method cannot be used to generate images around misclassified images,
but the generated images could be used to improve the dataset to increase the model's
robustness.

Traffic Sign Detection - A pre-trained YOLO model is to be used for traffic sign detection. The car
will capture images from camera feed in fixed time intervals and pass the image through the
model and extract signs throughout the day. This dataset generated will be used to improve
model. This additional feature has been implemented but not integrated currently in the UI. With
the real-life images, we can build the dataset using the above described techniques to improve
model performance.

Guide to run the UI locally

https://drive.google.com/drive/folders/1iRahEUP_q51oIJm1Q93hkLPD8lKEa7Jx?usp=sharing

Download the required file: interiit-backend.tar.gz

The documentation assumes that the following:

User has python3.8 installed and python scripts can be excuted by running python3
/path/to/script/

The pip is of the lastest version

CUDA is set up properly (if gpu is to be used)

Install Redis:

sudo apt install redis-server

Install MongoDB:

Install python dependencies by running (in the interiit-backend folder):

sudo apt-get install python3.8-dev
python3 -m pip install -U pip
python3 -m pip install -r requirements.txt

Run the backend server by running (in the interiit-backend folder):

./start.sh

Now navigate to:

http://localhost:5000/

To run the app, the user only needs the code present in interiit-backend but the code for app's
frontend (interiit-frontend) has also been provided.

wget -qO - https://www.mongodb.org/static/pgp/server-4.4.asc | sudo apt-key add -
echo "deb [arch=amd64,arm64] https://repo.mongodb.org/apt/ubuntu bionic/mongodb-org/4.4 mult
sudo apt-get update
sudo apt-get install -y mongodb-org
sudo systemctl start mongod
sudo systemctl enable mongod

https://drive.google.com/drive/folders/1iRahEUP_q51oIJm1Q93hkLPD8lKEa7Jx?usp=sharing

Code Structure

Directory or File
Name

Description

generated/ Stores all the trained models and their metadata.

static/ Stores datasets and static files for the frontend.

app.py Contains all the code for the app's backend.

benchmark.pth The weights for Benchmark model.

heatmap.py Functions to get Anchors and Integrated Gradients.

model.py Contains model's architecture.

segragate.py Contains code logic for smart segregation.

requirements.txt
A requirements file without any packages that depend on other packages
in the file.

start.sh Script to start the app.

utility.py Utility functions to upload, apply transforms, get model stats, etc.

UI Features and Guide

There are following datasets available in the UI:

Main Dataset : Comprises of all images from DatasetTesting and the images added using the
UI

GTSRB Dataset : Vanilla GTSRB Dataset

GTSRB_48 Dataset : DatasetAug

Difficult Dataset : DatasetTesting

The UI is divided into 7 segments which are as follows:

1. Explore Dataset:

Used to visualise the entire dataset

Can see multiple images of the classes at once, similar to File Explorer

2. Visualize Classes:

Generates t-SNE feature embeddings for uploaded images and displays a cluster map
Colours points on the cluster map based on predictions generated for uploaded images by a
model selected by the user.

3. Add New Classes:

Used to add new classes
Adds new label to the set of existing ones

4. Add New Images to Dataset:

Used to add new images to existing classes

While adding, the user has the ability to select one or more (combine and permute) of the
following augmentations, and generate more images:

Brightness & Contrast

Shift & Rotate

Blur (Gaussian, Median and Motion) & Optical Distortion

Noise (ISO, Gaussian and Multiplicative)

Hue, Saturation & Color Jitter

Dropout & Cutout

Affine & Perspective Transforms

The user has the ability to either add the selected images to test set or use smart segregation to
split the train set into train and validation set. Smart segregation is done using the model's
output upto the second last layer as feature vector to the input images, followed by clustering
and then splitting each of the cluster's into the ratio specified by the user.

The UI allows uploading multiple images at once

5. Additional Images Added:

Here, we can see the new images added to the dataset

The user has an option to move images between test, train and validation sets

The user can also edit the images (crop, rotate, etc.)

Unwanted images can also be deleted

6. Evaluate Models

Selecting a model displays it's training statistics

We can select any of the datasets and run evaluation for any model trained by us

Upto 5 evaluations can be run simultaneously, this helps in getting more info about the model in
lesser time

Once an evaluation is complete, a report is generated that presents the user with class-wise as
well as overall metrics of the following kind:

F1-score
Accuracy
Precision
Recall / Sensitivity / True Positive Rate
Specificity / True Negative Rate
Positive Likelihood
Negative Likelihood
Balanced Classification Rate
Balance Error Rate / Half Total Error Rate
Matthew's Correlation

The user is also presented with charts for these metrics to aid visualisation

Apart from this, the user can see the misclassified images from each of the classes

Upon clicking on any of these images, we get Integrated Gradients and also have the option to
get Anchors

These are useful to make deductions about the model and aid in improvement as mentioned in
Experiments and Evaluation

7. Improve Model

This pane has two features: Incremental Learning and Transfer Learning

Incremental Learning is to be used when we increase the number of classes and want to upgrade
the previous model to incorporate new data without training a new model from scratch

Transfer Learning can be used to either replace only the classifier (freeze weights) or resume
training of a previously trained model

As described in Experiments and Evaluation , we suggest running incremental learning for 1 or 2
epoch on the Benchmark model followed by Transfer Learning for about 10 to 15 epochs to get
good results in a scalable fashion

The user also has the option to enable the use of transforms while training the model
(recommended)

8. Make Prediction

We can view the statistics of a trained model by selecting it

Upload images to be tested and select a model to make the prediction

We get the labels and the confidence of the model while predicting such labels

Model Architecture

Type/Stride/Pad Filter Shape Input Size

Conv/s1/p0 1 x 1 x 1 48 x 48

Conv/s1/p0 5 x 5 x 29 48 x 48

Pool/s2/p0 3 x 3 maxpool

Conv/s1/p0 3 x 3 x 59 22 x 22

Pool/s2/p0 3 x 3 maxpool

Conv/s1/p0 3 x 3 x 74 10 x 10

Pool/s2/p0 3 x 3 maxpool

FC/s1 1 x 300 1 x 1184

FC/s1 1 x 300 1 x 300

Softmax/s1 Classifier 1 x Number_of_Classes

Top Models

General Naming Convention: model_ epochs .pth

Vanilla43

Trained on the 43 classes of dataset.tar.gz

Base43

Trained on first 43 classes of datasetaug.tar.gz

Aug43

Trained on first 43 classes of datasetaug.tar.gz with random transformations applied at each
epoch.

Base48

Trained on all 48 classes of datasetaug.tar.gz

Aug48

Trained on all 48 classes of datasetaug.tar.gz with random transformations applied at each
epoch.

Diff48

Trained on all 48 classes of datasetdiff.tar.gz

Inc48

Aug43_2 was retrained on last 5 classes of datasetaug.tar.gz with random transformations
applied at each epoch.
All layers except the last one were frozen, and the last layer was expanded to 48 units. Only the
last 5 units were trained.

Incf48

Inc48_1 was retrained on all 48 classes of datasetaug.tar.gz with random transformations
applied at each epoch.

Model Statistics

Model
Type

Model Name Train Dataset Test Dataset Accuracy
F1

Score

Model
Type

Model Name Train Dataset Test Dataset Accuracy
F1

Score

1 Base48 model_136.pth DatasetAug DatasetDiff 93.166 0.905

2 Base48 model_136.pth DatasetAug DatasetAug 97.393 0.954

3 Diff48 model_136.pth DatasetDiff DatasetDiff 95.322 0.931

4 Aug48 model_83.pth
DatasetAug + In-
model Transforms

DatasetDiff 97.118 0.957

5 Aug48 model_83.pth
DatasetAug + In-
model Transforms

DatasetAug 98.701 0.976

6 Base43 model_114.pth DatasetAug DatasetDiff 91.033 0.812

7 Aug48 model_83.pth
DatasetAug + In-
model Transforms

DatasetTesting 91.067 0.893

8 Diff48 model_136.pth DatasetDiff DatasetTesting 86.679 0.840

9 Base48 model_136.pth DatasetAug DatasetTesting 79.628 0.757

10 Base43 model_114.pth DatasetAug DatasetTesting 78.229 0.685

11 Inc48 model_1.pth
DatasetAug + In-
model Transforms

DatasetTesting 63.743 0.661

12 Inc48 model_1.pth
DatasetAug + In-
model Transforms

DatasetAug 80.683 0.817

13 Incf48 model_10.pth
DatasetAug + In-
model Transforms

DatasetAug 98.387 0.973

14 Incf48 model_10.pth
DatasetAug + In-
model Transforms

DatasetTesting 87.179 0.844

15 Incf48 model_16.pth
DatasetAug + In-
model Transforms

DatasetTesting 88.398 0.859

16 Incf48 model_26.pth
DatasetAug + In-
model Transforms

DatasetTesting 89.179 0.870

17 Aug48 model_12.pth
DatasetAug + In-
model Transforms

DatasetTesting 83.142 0.800

18 Aug48 model_32.pth
DatasetAug + In-
model Transforms

DatasetTesting 88.254 0.855

19 Vanilla43 model_193.pth Dataset Dataset 97.736 0.958

Model
Type

Model Name Train Dataset Test Dataset Accuracy
F1

Score

20 Vanilla43 model_193.pth Dataset DatasetTesting 78.229 0.685

References
Albumentations : Library used for generating randomized augmentations

External Datasets Used:

Mapillary Dataset

TSRD Dataset

Model Interpretability:

Alibi : Library used for Anchor Explanations and Integrated Gradients

LIME

Activation Maximization

Incremental Learning:

Adding New Classes Without Access to the Original Training Data with Applications to Language
Identification

Learning without Forgetting

Out-of-distribution Detection:

ODIN

Outlier Exposure

Improving Performance on Misclassified Images:

Conditional VAE : Paper, Code

StyleGAN2-ADA : Paper, Code

https://albumentations.ai/
https://www.mapillary.com/dataset/trafficsign
http://www.nlpr.ia.ac.cn/pal/trafficdata/recognition.html
https://github.com/SeldonIO/alibi
https://arxiv.org/abs/1602.04938v3
https://arxiv.org/pdf/1706.07979.pdf
https://www.eng.biu.ac.il/goldbej/files/2018/06/Interspeech_2018.pdf
https://arxiv.org/pdf/1606.09282.pdf
https://github.com/facebookresearch/odin
https://github.com/hendrycks/outlier-exposure
https://papers.nips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://github.com/NVlabs/stylegan2-ada-pytorch
https://arxiv.org/abs/2006.06676
https://github.com/AntixK/PyTorch-VAE

