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MicronNET

Numerically optimized 
convolutional layer 
microarchitecture.

As few parameters and 
computations possible, 
without compromising 
on performance.

Highly compact 
DeepCNN designed 
specifically for 
real-time 
embedded traffic 
sign recognition.

Based on 
macroarchitecture 
design strategies  that 
encourage improved 
computational 
efficiency and efficacy 
in embedded 
environments.



Why MicronNET?

Shows the strong balance 
between accuracy, architecture 
complexity, and cost.

Of the size of MCDNN
Such a small size makes it 
ideal for deployment in 
Self-Driving Cars.

1.32%
Accuracy on GTSRB
Proven to have Top 1 
Accuracy on GTSRB.

98.9%
Net Score

102.5



MicronNET

Model Architecture



BENCHMARK METRICS: Accuracy

Overall Accuracy: 97.53%



BENCHMARK METRICS: F1 Scores

Overall F1 Score: 0.956



The 5 Classes Introduced

Maximum Speed 40

Side Road Jn. on Right

No Honking

Limited Access Road

No StoppingSource: TSRD Dataset
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Making the dataset more difficult

Around 4000 
images were added 

with similar 
transforms of even 
higher probabilities 

to increase the 
number of 

augmented images.

Dataset DatasetAug DatasetDiff DatasetTesting

Vanilla GTSRB 
Dataset

Original Classes,
No Changes

5 classes added from 
TSRD dataset

 
Images from the 

common classes of 
TSRD and GTSRB 
were also added 

Several 
transformations 

applied to all images 
using several 

transforms with 
varying probabilities. 



METRICS: DatasetTesting

Overall F1 Score: 0.685



Interpreting 
Poor 

Performance
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Why is the network failing in particular places?

New Classes Augmentations Original 
Misclassifications

01 02 03

Sources of Inference: 1. F1 scores and Evaluation Metrics
2. Misclassified Images
3. Model Interpretability Features



● Used Anchor method to generate superpixels of the original misclassified image to explain the 
misclassifications

● These superpixels helps in making inferences about the images where the classifier can 
misclassify and can be used to modify the dataset or the model to improve performance

Anchor Explanations

Original Image Generated Anchor 



● Integrated gradients were calculated for each 
feature with respect to the original class as 
follows:

● Generated a heat map highlighting the pixels in 
favour of the class as shown

● Heat maps help in understanding the reason for 
misclassification 

● This information could be used to augment the 
dataset for better performance

Integrated Gradients



Changing 
The 

Network
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In-place Randomized Augmentations

● Change the training dataset by applying transforms to it and create a new dataset 
to handle augmentations.

● Storing such a large dataset while new images are added is a problem.

● Integrate the ability of applying transforms to the training images in the model 
itself.

● Random transformations are applied to the entire training and validation set and 
as a result, the model almost never sees the same image twice as well as is able 
to capture a large number of image-transform permutations.

● Also improves performance on non-augmented dataset.



METRICS: DatasetTesting

Overall F1 Score: Aug_83 - 0.893, Base_136 - 0.757



Expanding the Model: 
Incremental Learning

● Want to train on new classes only without losing information about old classes.

● Need to mitigate “catastrophic forgetting”.

● Add a new weight parameter for each new class in the second FC layer.

● During training, freeze all model parameters except the new weights.

● A modified regularised loss function to dampen forgetting: 



Incremental Learning

Model Architecture



 

Why not re-train from scratch?

● A very obvious solution - since the model is not performing, retrain it.

● But not viable if the dataset is ever-increasing - does not scale well.

● All the current knowledge gained by the model is also discarded.

● Incremental learning is better - more scalable and faster.

● Also retains current knowledge stored in the model.

● Attains re-train level performance in significantly lesser epochs - more 
advantageous as dataset size increases.



METRICS: Incremental Learning vs Retraining

Overall F1 Score: Aug_83 - 0.893, Incf_10 - 0.844



METRICS: Incremental Learning vs Retraining

Overall F1 Score: Aug_83 - 0.893, Incf_26 - 0.870



Further 
Improvements
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● Used activation maximization method to improve 
model’s performance.

● Generated images using misclassified images and 
class representations.

● Searches for an input which produces maximum 
response from the model by optimizing:

● Modifies the pixel values until resulting image has a 
high probability of belonging to correct class.

Activation Maximization

Misclassified Image

Generated Image



● Generated images did not show much deviation from original image.

● Generated an activation map for class 0 and superimposed it on an image from properly 
classified image from class 1.

Activation Maximization

Superimposed ImageActivation Map Original Image

● Misclassified the superimposed image with high probability.

● This method can be used to improve the dataset instead of generating images around 
misclassified images.



GANs: As a Feedback Loop 

● To increase class based model performance, we aimed at generating images similar to 
misclassified images by utilizing GAN as a generator and retraining on the generated images.

● We used a class conditioned StyleGAN2 with ADA. The motivation for this was the non 
availability of a very large training corpus which GANs generally require. ADA helps the GAN 
to generate good quality images with lesser data. 

● Even on data points non-classifiable by human intervention, Images generated using 
StyleGAN2 had considerably higher quality with low FID value. 

Target Image
(Present in Dataset)

64px * 64px

Generated Images
(Video Format)

64px * 64px



GANs: As a Feedback Loop 

● This allows us to get multiple images similar to the original misclassified images on which 
we can further train the classifier. This led to a individual class based increase in F1 score. 

● This approach is independent of the classification model used and can be in a manner of 
feedback learning on the model.

A Show of Images generated by 
the full range of vector space.



Out of distribution Detection (OOD)

● OOD or Out of Distribution Detection determines whether the input to the 
traffic sign classification model belongs to one of the trained classes or not.

● This feature allows us to keep introducing classes beyond the forty-eight that 
are being used right now.

● We explored three approaches (in upcoming slides):
○ ODIN
○ Outlier Exposure
○ Cluster Entropy  



ODIN

● ODIN  - Applies pre-processing to input images and temperature scaling to 
softmax function. This should affect the OOD images more than the 
in-distribution images.. The temperature scaling is done as follows. T is usually 
chosen as 1000.

● The input pre-processing involves adding small perturbations. The idea is to 
increase the softmax score of any given input, irrespective of class label. This 
ideally should affect the in-distribution more but in our implementation it 
actually affects the out of class traffic signs equally therefore no useful result is 
obtained.



Outlier Exposure

● Outlier Exposure - Tunes the trained model again by minimizing a cost function 
so that the model learns to differentiate between in-distribution and OOD 
images. The custom cost function is designed so that the sign classifying ability 
is not affected much. The cost function used is:

● Unfortunately, this is more suited to differentiating between a traffic sign and 
an animal, not good enough for determining whether the traffic sign is in 
distribution.



Actual class representations

Can help determine new classes in data.

Feature based clustering puts images 
having similar attributes in same cluster.

Representation using model predicted 
labels. 

The clusters having high value of entropy 
indicate new classes. 

Cluster Entropy



SIGN Detection

● We plan to use a pre-trained YOLO model trained on GTSDB images to 
detect traffic signs from the street view images captured. This will allow 
us to continuously increase our database as time passes. 

● This’ll also help us in improve our models by adding images to pre-existing 
classes and introducing new classes.

● Model in Action:



UI Demo06



Select one or more (combine and permute) of 
the following augmentations with full control 
over parameters, and generate more images:

● Brightness & Contrast
● Shift & Rotate 
● Blur (Gaussian, Median and Motion) & 

Optical Distortion
● Noise (ISO, Gaussian and Multiplicative)
● Hue, Saturation & Color Jitter
● Dropout & Cutout
● Affine & Perspective Transforms

Transformations & Augmentations



● Visualize each image added 
through the UI.

● Move images between train, 
validation and test set.

● Delete unsatisfactory images 
from the dataset.

Control Over Additional Images



● Manually select and edit images 
according to user choice.

● The editor has all the basic 
features like crop, rotate, flip, 
blur, etc.

Inbuilt Image Editor



Smart Segregation 

● Extract image features and using them 
to form a suitable number of clusters. 

● Each cluster is a set of similar images.

● A uniform split can be achieved by 
dividing every cluster into training and 
validation sets in a fixed ratio. 



● User can run upto 5 simultaneous evaluations for models trained using the UI.

● Enables the user to compare the performance of models on different datasets in 
lesser time.

Parallel Evaluations

Time to run 5 evaluations 
one by one

Time to run 5 
simultaneous evaluations

~6min

~5min

(Benchmark model evaluated on GTSRB dataset)



Thank You.
Questions?

We will try our best to 
answer them!


