
H1_BSC_16

BOSCH’s
TRAFFIC SIGN RECOGNITION

The
Benchmark

Model
01

MicronNET

Numerically optimized
convolutional layer
microarchitecture.

As few parameters and
computations possible,
without compromising
on performance.

Highly compact
DeepCNN designed
specifically for
real-time
embedded traffic
sign recognition.

Based on
macroarchitecture
design strategies that
encourage improved
computational
efficiency and efficacy
in embedded
environments.

Why MicronNET?

Shows the strong balance
between accuracy, architecture
complexity, and cost.

Of the size of MCDNN
Such a small size makes it
ideal for deployment in
Self-Driving Cars.

1.32%
Accuracy on GTSRB
Proven to have Top 1
Accuracy on GTSRB.

98.9%
Net Score

102.5

MicronNET

Model Architecture

BENCHMARK METRICS: Accuracy

Overall Accuracy: 97.53%

BENCHMARK METRICS: F1 Scores

Overall F1 Score: 0.956

The 5 Classes Introduced

Maximum Speed 40

Side Road Jn. on Right

No Honking

Limited Access Road

No StoppingSource: TSRD Dataset

Increasing
Dataset

Difficulty
02

Making the dataset more difficult

Around 4000
images were added

with similar
transforms of even
higher probabilities

to increase the
number of

augmented images.

Dataset DatasetAug DatasetDiff DatasetTesting

Vanilla GTSRB
Dataset

Original Classes,
No Changes

5 classes added from
TSRD dataset

Images from the

common classes of
TSRD and GTSRB
were also added

Several
transformations

applied to all images
using several

transforms with
varying probabilities.

METRICS: DatasetTesting

Overall F1 Score: 0.685

Interpreting
Poor

Performance
03

Why is the network failing in particular places?

New Classes Augmentations Original
Misclassifications

01 02 03

Sources of Inference: 1. F1 scores and Evaluation Metrics
2. Misclassified Images
3. Model Interpretability Features

● Used Anchor method to generate superpixels of the original misclassified image to explain the
misclassifications

● These superpixels helps in making inferences about the images where the classifier can
misclassify and can be used to modify the dataset or the model to improve performance

Anchor Explanations

Original Image Generated Anchor

● Integrated gradients were calculated for each
feature with respect to the original class as
follows:

● Generated a heat map highlighting the pixels in
favour of the class as shown

● Heat maps help in understanding the reason for
misclassification

● This information could be used to augment the
dataset for better performance

Integrated Gradients

Changing
The

Network
04

In-place Randomized Augmentations

● Change the training dataset by applying transforms to it and create a new dataset
to handle augmentations.

● Storing such a large dataset while new images are added is a problem.

● Integrate the ability of applying transforms to the training images in the model
itself.

● Random transformations are applied to the entire training and validation set and
as a result, the model almost never sees the same image twice as well as is able
to capture a large number of image-transform permutations.

● Also improves performance on non-augmented dataset.

METRICS: DatasetTesting

Overall F1 Score: Aug_83 - 0.893, Base_136 - 0.757

Expanding the Model:
Incremental Learning

● Want to train on new classes only without losing information about old classes.

● Need to mitigate “catastrophic forgetting”.

● Add a new weight parameter for each new class in the second FC layer.

● During training, freeze all model parameters except the new weights.

● A modified regularised loss function to dampen forgetting:

Incremental Learning

Model Architecture

Why not re-train from scratch?

● A very obvious solution - since the model is not performing, retrain it.

● But not viable if the dataset is ever-increasing - does not scale well.

● All the current knowledge gained by the model is also discarded.

● Incremental learning is better - more scalable and faster.

● Also retains current knowledge stored in the model.

● Attains re-train level performance in significantly lesser epochs - more
advantageous as dataset size increases.

METRICS: Incremental Learning vs Retraining

Overall F1 Score: Aug_83 - 0.893, Incf_10 - 0.844

METRICS: Incremental Learning vs Retraining

Overall F1 Score: Aug_83 - 0.893, Incf_26 - 0.870

Further
Improvements

05

● Used activation maximization method to improve
model’s performance.

● Generated images using misclassified images and
class representations.

● Searches for an input which produces maximum
response from the model by optimizing:

● Modifies the pixel values until resulting image has a
high probability of belonging to correct class.

Activation Maximization

Misclassified Image

Generated Image

● Generated images did not show much deviation from original image.

● Generated an activation map for class 0 and superimposed it on an image from properly
classified image from class 1.

Activation Maximization

Superimposed ImageActivation Map Original Image

● Misclassified the superimposed image with high probability.

● This method can be used to improve the dataset instead of generating images around
misclassified images.

GANs: As a Feedback Loop

● To increase class based model performance, we aimed at generating images similar to
misclassified images by utilizing GAN as a generator and retraining on the generated images.

● We used a class conditioned StyleGAN2 with ADA. The motivation for this was the non
availability of a very large training corpus which GANs generally require. ADA helps the GAN
to generate good quality images with lesser data.

● Even on data points non-classifiable by human intervention, Images generated using
StyleGAN2 had considerably higher quality with low FID value.

Target Image
(Present in Dataset)

64px * 64px

Generated Images
(Video Format)

64px * 64px

GANs: As a Feedback Loop

● This allows us to get multiple images similar to the original misclassified images on which
we can further train the classifier. This led to a individual class based increase in F1 score.

● This approach is independent of the classification model used and can be in a manner of
feedback learning on the model.

A Show of Images generated by
the full range of vector space.

Out of distribution Detection (OOD)

● OOD or Out of Distribution Detection determines whether the input to the
traffic sign classification model belongs to one of the trained classes or not.

● This feature allows us to keep introducing classes beyond the forty-eight that
are being used right now.

● We explored three approaches (in upcoming slides):
○ ODIN
○ Outlier Exposure
○ Cluster Entropy

ODIN

● ODIN - Applies pre-processing to input images and temperature scaling to
softmax function. This should affect the OOD images more than the
in-distribution images.. The temperature scaling is done as follows. T is usually
chosen as 1000.

● The input pre-processing involves adding small perturbations. The idea is to
increase the softmax score of any given input, irrespective of class label. This
ideally should affect the in-distribution more but in our implementation it
actually affects the out of class traffic signs equally therefore no useful result is
obtained.

Outlier Exposure

● Outlier Exposure - Tunes the trained model again by minimizing a cost function
so that the model learns to differentiate between in-distribution and OOD
images. The custom cost function is designed so that the sign classifying ability
is not affected much. The cost function used is:

● Unfortunately, this is more suited to differentiating between a traffic sign and
an animal, not good enough for determining whether the traffic sign is in
distribution.

Actual class representations

Can help determine new classes in data.

Feature based clustering puts images
having similar attributes in same cluster.

Representation using model predicted
labels.

The clusters having high value of entropy
indicate new classes.

Cluster Entropy

SIGN Detection

● We plan to use a pre-trained YOLO model trained on GTSDB images to
detect traffic signs from the street view images captured. This will allow
us to continuously increase our database as time passes.

● This’ll also help us in improve our models by adding images to pre-existing
classes and introducing new classes.

● Model in Action:

UI Demo06

Select one or more (combine and permute) of
the following augmentations with full control
over parameters, and generate more images:

● Brightness & Contrast
● Shift & Rotate
● Blur (Gaussian, Median and Motion) &

Optical Distortion
● Noise (ISO, Gaussian and Multiplicative)
● Hue, Saturation & Color Jitter
● Dropout & Cutout
● Affine & Perspective Transforms

Transformations & Augmentations

● Visualize each image added
through the UI.

● Move images between train,
validation and test set.

● Delete unsatisfactory images
from the dataset.

Control Over Additional Images

● Manually select and edit images
according to user choice.

● The editor has all the basic
features like crop, rotate, flip,
blur, etc.

Inbuilt Image Editor

Smart Segregation

● Extract image features and using them
to form a suitable number of clusters.

● Each cluster is a set of similar images.

● A uniform split can be achieved by
dividing every cluster into training and
validation sets in a fixed ratio.

● User can run upto 5 simultaneous evaluations for models trained using the UI.

● Enables the user to compare the performance of models on different datasets in
lesser time.

Parallel Evaluations

Time to run 5 evaluations
one by one

Time to run 5
simultaneous evaluations

~6min

~5min

(Benchmark model evaluated on GTSRB dataset)

Thank You.
Questions?

We will try our best to
answer them!

