
Graph-Based Modeling, Scheduling, 
and Verification for Intersection 

Management of Intelligent Vehicles

CS637A: Embedded and Cyber Physical Systems

Fall 2020: Project Presentation

Presented By:

Ashwin Shenai (180156)

Kshitij Kabeer (180366)

1

Paper Authors:
YI-TING LIN, HSIANG HSU, SHANG-CHIEN LIN, CHUNG-WEI LIN,
IRIS HUI-RU JIANG, National Taiwan University, Taiwan
CHANGLIU LIU, Carnegie Mellon University, USA

Conference: EMSOFT 2019



Intersection Management

• Management of vehicles and their passing order, at intersections

• Crucial for efficient traffic management and safety, especially with the 
advent of autonomous vehicles

• Optimizing passing time, preventing deadlock and ensuring no 
collisions – some of the prime objectives

• Position of each vehicle and commands 
communicated amongst themselves, or
to a roadside unit – the intersection manager

2



Related Work

• Protocols between vehicles and a 
centralized intersection manager

3

STIP: V2V Intersection Protocols [4]

Multi-Agent Reservation-based Scheduler [12]

Delay-aware centralized intersection manager [26]



Related Work

• Discrete-event control and conflict 
resolution in a centralized setting

4

Job scheduling-based semi-autonomous supervisory control

Reactive supervisory control

Discrete-event conflict-
based modelling

Refs: [2,7,9,22]



Related Work

• Distributed inter-vehicle 
communication-based scheduling

5

Vehicle model for distributed scheduling [18]

• Petri net-based modelling for 
cooperative vehicles

Timed petri-net model for two-lane intersection [24]



Paper Contributions

• Graph based model – can deal with various granularities of 
intersections, highly expressive

• Centralized cycle removal for efficient, safe and deadlock free crossing 
of vehicle

• Efficiently scalable in response to increasing number of vehicles and 
conflict zone complexity

• Formal verification techniques to guarantee deadlock-freeness in all 
scenarios

6



Terminology
• Intersection

• Conflict Zone (j) 

• Vehicle (Δi)

• Intersection Manager

7

• Earliest Arrival 
Time(ai)

• Vertex Entering 
Time(si,j)

• Edge Waiting 
Time(wk)

• Vertex Passing 
Time (pi,j)



Timing Conflict Graph (TCG)

• Type-1: Vehicle Δi goes from j to j'

• Type-2: Vehicles Δi and Δi' (in the same starting lane) go through j

• Type-3: Vehicles Δi and Δi' (in different starting lanes) go through j
• Always in pairs

8



Problem Modelling

• Given a TCG G, earliest arrival times, edge waiting and passing times

1. Compute an acyclic subgraph G'
• With all the vertices, Type-1 and Type-2 edges

• Only one out of each pair of Type-3 edges

2. Guarantee no deadlock in G'

3. Assign an entering time to each vertex in G'

4. Minimize the maximum leaving time tmax = maxG'(si,j + pi,j)

9

1. Collision Freeness
2. Liveness/Feasibility
3. Scheduling
4. Optimality of Schedule



Assumptions

• Perfect, no-delay communication among vehicles and intersection 
managers.
• Can model delay by increasing edge wait times, or adding noise in inputs.

• Problem solved in discrete chunks, no dynamic addition of vehicles
• Vehicles coming in before the current graph is processed will be scheduled in 

the next chunk

• Dynamics of the vehicles aren't modelled – speed is constant or zero
• No overtaking allowed

10



Verification

• Collision-freeness is guaranteed by the scheduler

• Need to ensure deadlock-freeness through verification
• Graph-based verification

• Petri net-based verification

• Either method can be used as a sub-routine to verify liveness of 
candidate schedules during scheduling

11



Graph-based Verification

• One would expect deadlock to occur when there is a cycle in the 
timing conflict graph. But:

Having no cycle in G' or G does not guarantee deadlock-freeness

12

Ex. 1: V2 waits for V1 to pass Z1
V1 waits for V2 to pass Z3

Deadlock, no cycle

• Deadlock can occur due to two 
parallel paths between same 
start and end vertices.

• Create an alternative graph to 
model deadlocks as cycles 
based on the timing conflict 
graph.

Ex. 2: V1 waits for V2 to pass Z1
V2 waits for V1 to pass Z3

No deadlock, V2 can move to Z2



Resource Conflict Graph (RCG)

• The basic idea is to combine edges of the conflict graph into vertices

13

• All Type-1 and Type-2 
edges absorbed into 
vertices

• Each edge in the resource 
conflict graph is a Type-3 
edge in the timing conflict 
graph

• At least one of the j-
indices are equal across an 
edge



Verifying Liveness

• An edge (ik, jk, j'k) → (ik+1, jk+1, j'k+1) in RCG implies ik must 
free up the common conflict zone before ik+1 arrives.
• If there is a cycle in RCG, then there is a deadlock.

• If there is a deadlock, say i can't move from j to j', then 
there must be an edge to (i, j, j') in RCG
• Can show using one of the construction rules

• Repeatedly apply above statement to all vehicles in deadlock

• Ultimately forms a cycle in RCG, since vehicles and zones are 
finite.

14

• So, to verify that acyclic subgraph has no deadlock – construct its 
resource conflict graph and check for cycles in it.

Ex. 2: No deadlock, no cycle

Ex. 1: Deadlock, cycle exists



With Deadlock Without Deadlock

Acyclic TCG G'

Equivalent Petri-Net Π

Petri Net Construction

15



Petri Net Verification

The Petri net Π has a deadlock if and only if G' has a deadlock

• If Π has a deadlock, at least one place qi,i',j never receives a token, which 
implies that Δi cannot leave j before Δi' enters j (so deadlock in G')

• If deadlock occurs in G' (suppose that some Δi can't go from j to j') it 
implies that qi',i,j will never receive a token (so deadlock in Π)

• So, to verify that acyclic subgraph has no deadlock – construct equivalent 
Petri Net and check it for deadlocks

16



Scheduling

• Naïve approach: first-come first-serve schedule
• Ignores key interactions between vehicles and conflict zones
• Introduces extra delays in many cases

• Generate a passing order for vehicles by constructing acyclic subgraph 
G' from conflict graph G with minimum total passing time.
• Subgraph generated through cycle removal

• Naïve cycle removal: DFS traversal of the graph
• May not always remove "good" edges to optimize objective
• Can't remove some types of edges due to safety constraints

17



Cycle Removal-Based Scheduling

• We need to remove cycles while minimizing total passing time
• Min. Spanning Tree – acyclic subgraph with minimum sum of edge weights

• Iteratively remove max-cost edge whose removal doesn't disconnect graph

• Proposed algorithm is based on the above idea
• Iteratively remove max-cost Type-3 edges without violating constraints

• Ensuring liveness complicates the problem – deadlocks exist even in acyclic 
graphs, as shown earlier

• Need to efficiently handle cases where max-cost edge cannot be removed
• Backtracking and redoing is computationally expensive – equivalent to brute force

18



Edge and Vertex States

Edge State: For an edge e,

ON - e is included in G'

OFF – e has been removed from G'

UNDECIDED – Will decide ON/OFF 
in current subproblem

DONTCARE – e not included 
in current subproblem

• All Type-1 and Type-2 edges 
always ON

19

Vertex State: For a vertex v,

BLACK – Entering time scheduled

GRAY – Entering time depends on Type-3 
edges only

WHITE – Entering time can depend on 
any type of edges

• If any outgoing edge is ON, v is BLACK
• If v is BLACK, all edges through it 

must be ON/OFF
• If v is GRAY, v' must be BLACK if (v', v) 

is not a Type-3 edge



Vertex Entering Time

• Δi can't enter j before all earlier vehicles Δi' have passed

max{si',j + pi',j + wk}

• Additionally, need to wait for Δi' to move to next zone j'

max{si',j' - wk' + wk}

• Entering time is max of above two quantities – need to fulfill both

• For the first conflict zone on Δi's path, also depends on arrival time ai

• For v, depends on the earlier vertices u where (u,v) is an edge of G'
• Since G' is acyclic, compute in topological order

20



Vertex Slack

• Maximum delay that can be added at vertex without changing the 
maximum leaving time tmax (i.e. the optimization objective)

• For the last vertex on the path of the last vehicle vi,j'

tmax – (si,j' + pi,j')

• For other vertices u, it is minimum of slack of all reachable vertices v 
where (u,v) edge in G'

• Compute reverse topologically for acyclic graph

21



Defining the Cost of an Edge

Edge Cost: Delay incurred in tmax due to adding this edge in G'

Only need to look at cost of Type-3 edges, ek = (vi,j, vi',j)

cost[ek] = (si,j + pi,j + wk) - si',j - slack[vi',j]

(si,j + pi,j + wk) and si',j are start times for vi',j with & without ek

Compare with slack at vi',j to determine effect of ek on tmax

If the cost is positive, tmax will increase.

But if cost is negative, tmax won't change.

22



Removal of Type-3 Edges

• Initialization
• Include Type-1 and Type-2 edges in G', set their states to ON

• Compute vertex entering times on G', leaving time of last vehicle as tmax

• Set Type-3 states to UNDECIDED, compute vertex slacks.

• Identify candidate edges for removal
• Leader vertex – vi,j where i is first vehicle on source lane, j is first conflict zone

• Candidate edges – UNDECIDED Type-3 edges with one vertex as a leader vertex

• Compute cost of these edges, and try to remove in decreasing order of cost

23



Ensuring Deadlock-Freeness

• Type-3 edges always in pairs – exactly one of two must be included

• Remove one and verify deadlock-freeness - if it fails, swap the edges
• Use edge state variables to temporarily remove an edge

• If G' is deadlock-free, recompute vertex entering times and slacks
• Identify newly set GRAY vertices as leader vertices, and repeat

• If G' is not deadlock-free, need to re-evaluate entire assignment till ek

• Backtracking is expensive – divide into subproblems

• Schedule the first half of the vehicles arranged in increasing arrival time
• For Type-3 edges between the two halves, assume first half passes before second half

• Use the schedule of the first half while solving the second subproblem

24



Proof of Correctness and Time Complexity

• Type-1 and Type-2 edges included in G' by default.

• Exactly one Type-3 edge is selected out of every pair

• Deadlock-freeness is verified on removing each Type-3 edge

• For the solution obtained by recursively dividing into subproblems
• No deadlock while merging both halves – we assume first passes before second

• Each subproblem is essentially applying the same algorithm on a smaller set

• Base case – only one vehicle: no Type-3 edges, so G' is feasible here

• Hence algorithm provably generates acyclic and deadlock-free G' always

• Time complexity of scheduling algorithm: O(E2logV)

25



Results

26

For maximum 
ai equal to 60 
seconds

For maximum 
ai equal to 30 
seconds



Graph of TD and TL for various algorithms, with maximum ai = 30 seconds

27
Experiments were run by the authors on a macOS Mojave notebook with 2.3 GHz Intel CPU and 8 GB memory.

Results



Results

Experiments were run by the authors on a macOS Mojave notebook with 2.3 GHz Intel CPU and 8 GB memory.

Graph of TD and TL for various algorithms, with maximum ai = 60 seconds



Results

Experiments were run by the authors on a macOS Mojave notebook with 2.3 GHz Intel CPU and 8 GB memory.

Graph of TD and TL for different number of conflict zones



Our Implementation

• Have implemented the algorithm as well as the simulation aspect of 
it, using C/C++

• Random traffic generator, intersections with 1-16 conflict zones, TCG 
graph generator, scheduler and deadlock checker (using RCG and 
Petri-Net).

• Traffic and Intersection generator, TCG graph generator and deadlock 
checking work

• Were unable to resolve some logical errors in the code – a certain 
step in the algorithm hasn’t been detailed in the paper

• Also can visualize the order of vehicle passing using SUMO simulator

30

https://github.com/ashwin2802/CS637

https://github.com/ashwin2802/CS637


• Paper authors have suggested 
using Platform Independent 
Petri-net Editor (PIPE2)

• A GUI tool for easily 
modelling and visualizing 
Petri-nets and doing 
reachability analysis

• However, documentation is 
scarce and no way to 
interface it with code

31

http://pipe2.sourceforge.net/

http://pipe2.sourceforge.net/


Simulation of Urban Mobility

• Continuous traffic simulation package

• Completely open-source, highly portable

• Some features
• Simulation of public transport

• Simulation of logistics, individual people, trip 
chains

• Optimal Path Routing, pedestrian traffic 
modeling

• Bicycle, waterway and railway simulations

32

https://www.eclipse.org/sumo/

https://www.eclipse.org/sumo/


Code Demos - Modelling

Sample Generated 
Traffic Distribution

Intersection Model for 4 conflict zones Lane Convention

33



Code Demos - Modelling

An example Timing Conflict Graph

34



Code Demos - Verification

Test TCG and expected RCG

RCG Verification Result

Expected Petri Net Model

Petri Net Verification Result

35



SUMO Simulation

• Experimented with manually using SUMO

• Wrote code to control it through Traffic Control Interface(TraCI) using TCP.

• Currently doesn't work as intended, vehicles don't follow proper schedule

• Code is on the experimental_sumo branch of our Github repository

• First generates proper configuration files.

• Then runs a modified version of our original Petri-Net simulator in the 
background

• Updates the speed of the vehicles at each time step accordingly and 
communicates it to the GUI.

36

https://github.com/ashwin2802/CS637/tree/experimental_sumo
https://github.com/ashwin2802/CS637/


Conclusions

• Presents a very general graph-based model for intersection 
management

• Can be applied to other types of intersections as well – the core 
concept is modelling the conflict zones discretely

• Presents an effective realtime scheduling algorithm based on cycle 
removal

• Pretty lightweight once the requisite data is available to the code

• Presents formal verification approaches for deadlock-freeness

• Challenges faced in implementation on an embedded system aren't 
taken into account

37



Future Avenues

• Dynamic scheduling – scheduling vehicles as they arrive instead of in 
discrete intervals could reduce delays from chunk transitions

• Complex intersection topologies – designing algorithms to create conflict 
zone models out of any given intersection area

• Modelling dynamics – allowing vehicles to accelerate and decelerate 
instead of assuming constant speed will yield more realistic results

• Fault-proof scheduling – adversarial attacks on the intersection manager 
and issues arising from communication problems must be considered to 
ensure vehicles never receive an unsafe version of a verified schedule

• UAV Traffic Management – applying the same approach to manage a 
swarm of UAVs flying through a common airspace

38



Work Related to Future Avenues

39

Some interesting papers we read related to the future avenues discussed below are 
briefly described here:
Multi-Agent Path Finding for UAV Traffic Management [1]
• Models intersection management for UAVs as a conflict resolution problem
• Finding multiple paths on a graph satisfying safety constraints – MAPF solving
• Uses a similar batch processing approach – vehicles are scheduled in chunks
• However MAPF solving is NP-hard – computationally expensive in comparison

Intersection Auctions and Reservation-Based Control in Dynamic Traffic Assignment [2]
• Discusses Dynamic Traffic Assignment as a flow problem on a graph
• Tile-based reservation – vehicles place bids for conflicting tiles when they reach the 

front of their lane, based on the delay incurred if they don't get that tile instantly
• Intersection zones are divided radially instead of linearly

http://www.ifaamas.org/Proceedings/aamas2019/pdfs/p131.pdf
https://doi.org/10.3141/2497-04


Work Done Post Presentation

• Worked extensively on resolving the various issues in our 
implementation

• Experimented with visualizing solution schedules in SUMO

• Read some more papers related to future work avenues

• Added some more details to the presentation – demo screenshots 
and a few minor improvements

40



Individual Member Contributions

• We have closely collaborated on the entire project. Each aspect was 
thoroughly discussed, edited and finalized with matching effort.

• However, for the sake of distribution:

41

Kshitij Kabeer
• Slides: 2, 6-10, 15-16, 26-27, 30-32, 36, 41
• Code:

• Intersection and Random Traffic 
Generation

• Construction of Timing Conflict Graph
• Petri-net based Verification
• SUMO simulation (after presentation)

Ashwin Shenai
• Slides: 3-5, 11-14, 17-25, 28-29, 33-35, 37-40
• Code:

• Calculation of Edge costs, Vertex Slacks

• Cycle-removal based scheduler

• Construction of and verification using 
Resource Conflict Graphs

• SUMO simulation (before presentation)



References

Project Paper:

Yi-Ting Lin, Hsiang Hsu, Shang-Chien Lin, Chung-Wei Lin, Iris Hui-Ru Jiang, 
and Changliu Liu. 2019. Graph-Based Modeling, Scheduling, and Verification 
for Intersection Management of Intelligent Vehicles. ACM Trans. Embed. 
Comput. Syst. 18, 5s, Article 95 (October 2019), 21 pages.

DOI: https://doi.org/10.1145/3358221

Related Work:

References in Related Work section (Slides 3-5) of the presentation refer to 
accordingly numbered citations of the above paper.

42

https://doi.org/10.1145/3358221


References

Work Related to Future Avenues:

[1] Florence Ho, Ana Salta, Ruben Geraldes, Artur Goncalves, Marc Cavazza, and 
Helmut Prendinger. 2019. Multi-Agent Path Finding for UAV Traffic Management. In 
Proc. of the 18th International Conference on Autonomous Agents and Multiagent 
Systems (AAMAS 2019), Montreal, Canada, May 13–17,2019, IFAAMAS, 9 pages

Link: http://www.ifaamas.org/Proceedings/aamas2019/pdfs/p131.pdf

[2] Levin MW, Boyles SD. Intersection Auctions and Reservation-Based Control in 
Dynamic Traffic Assignment. Transportation Research Record. 2015;2497(1):35-44.

DOI:10.3141/2497-04

43

http://www.ifaamas.org/Proceedings/aamas2019/pdfs/p131.pdf
https://doi.org/10.3141/2497-04

