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Intersection Management

• Management of vehicles and their passing order, at intersections

• Crucial for efficient traffic management and safety, especially with the 
advent of autonomous vehicles

• Optimizing passing time, preventing deadlock and ensuring no 
collisions – some of the prime objectives

• Position of each vehicle and commands 
communicated amongst themselves, or
to a roadside unit – the intersection manager
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Related Work

• Protocols between vehicles and a 
centralized intersection manager
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STIP: V2V Intersection Protocols [4]

Multi-Agent Reservation-based Scheduler [12]

Delay-aware centralized intersection manager [26]



Related Work

• Discrete-event control and conflict 
resolution in a centralized setting
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Job scheduling-based semi-autonomous supervisory control

Reactive supervisory control

Discrete-event conflict-
based modelling

Refs: [2,7,9,22]



Related Work

• Distributed inter-vehicle 
communication-based scheduling
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Vehicle model for distributed scheduling [18]

• Petri net-based modelling for 
cooperative vehicles

Timed petri-net model for two-lane intersection [24]



Paper Contributions

• Graph based model – can deal with various granularities of 
intersections, highly expressive

• Centralized cycle removal for efficient, safe and deadlock free crossing 
of vehicle

• Efficiently scalable in response to increasing number of vehicles and 
conflict zone complexity

• Formal verification techniques to guarantee deadlock-freeness in all 
scenarios
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Terminology
• Intersection

• Conflict Zone (j) 

• Vehicle (Δi)

• Intersection Manager
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• Earliest Arrival 
Time(ai)

• Vertex Entering 
Time(si,j)

• Edge Waiting 
Time(wk)

• Vertex Passing 
Time (pi,j)



Timing Conflict Graph (TCG)

• Type-1: Vehicle Δi goes from j to j'

• Type-2: Vehicles Δi and Δi' (in the same starting lane) go through j

• Type-3: Vehicles Δi and Δi' (in different starting lanes) go through j
• Always in pairs
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Problem Modelling

• Given a TCG G, earliest arrival times, edge waiting and passing times

1. Compute an acyclic subgraph G'
• With all the vertices, Type-1 and Type-2 edges

• Only one out of each pair of Type-3 edges

2. Guarantee no deadlock in G'

3. Assign an entering time to each vertex in G'

4. Minimize the maximum leaving time tmax = maxG'(si,j + pi,j)
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1. Collision Freeness
2. Liveness/Feasibility
3. Scheduling
4. Optimality of Schedule



Assumptions

• Perfect, no-delay communication among vehicles and intersection 
managers.
• Can model delay by increasing edge wait times, or adding noise in inputs.

• Problem solved in discrete chunks, no dynamic addition of vehicles
• Vehicles coming in before the current graph is processed will be scheduled in 

the next chunk

• Dynamics of the vehicles aren't modelled – speed is constant or zero
• No overtaking allowed
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Verification

• Collision-freeness is guaranteed by the scheduler

• Need to ensure deadlock-freeness through verification
• Graph-based verification

• Petri net-based verification

• Either method can be used as a sub-routine to verify liveness of 
candidate schedules during scheduling
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Graph-based Verification

• One would expect deadlock to occur when there is a cycle in the 
timing conflict graph. But:

Having no cycle in G' or G does not guarantee deadlock-freeness
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Ex. 1: V2 waits for V1 to pass Z1
V1 waits for V2 to pass Z3

Deadlock, no cycle

• Deadlock can occur due to two 
parallel paths between same 
start and end vertices.

• Create an alternative graph to 
model deadlocks as cycles 
based on the timing conflict 
graph.

Ex. 2: V1 waits for V2 to pass Z1
V2 waits for V1 to pass Z3

No deadlock, V2 can move to Z2



Resource Conflict Graph (RCG)

• The basic idea is to combine edges of the conflict graph into vertices
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• All Type-1 and Type-2 
edges absorbed into 
vertices

• Each edge in the resource 
conflict graph is a Type-3 
edge in the timing conflict 
graph

• At least one of the j-
indices are equal across an 
edge



Verifying Liveness

• An edge (ik, jk, j'k) → (ik+1, jk+1, j'k+1) in RCG implies ik must 
free up the common conflict zone before ik+1 arrives.
• If there is a cycle in RCG, then there is a deadlock.

• If there is a deadlock, say i can't move from j to j', then 
there must be an edge to (i, j, j') in RCG
• Can show using one of the construction rules

• Repeatedly apply above statement to all vehicles in deadlock

• Ultimately forms a cycle in RCG, since vehicles and zones are 
finite.
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• So, to verify that acyclic subgraph has no deadlock – construct its 
resource conflict graph and check for cycles in it.

Ex. 2: No deadlock, no cycle

Ex. 1: Deadlock, cycle exists



With Deadlock Without Deadlock

Acyclic TCG G'

Equivalent Petri-Net Π

Petri Net Construction
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Petri Net Verification

The Petri net Π has a deadlock if and only if G' has a deadlock

• If Π has a deadlock, at least one place qi,i',j never receives a token, which 
implies that Δi cannot leave j before Δi' enters j (so deadlock in G')

• If deadlock occurs in G' (suppose that some Δi can't go from j to j') it 
implies that qi',i,j will never receive a token (so deadlock in Π)

• So, to verify that acyclic subgraph has no deadlock – construct equivalent 
Petri Net and check it for deadlocks
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Scheduling

• Naïve approach: first-come first-serve schedule
• Ignores key interactions between vehicles and conflict zones
• Introduces extra delays in many cases

• Generate a passing order for vehicles by constructing acyclic subgraph 
G' from conflict graph G with minimum total passing time.
• Subgraph generated through cycle removal

• Naïve cycle removal: DFS traversal of the graph
• May not always remove "good" edges to optimize objective
• Can't remove some types of edges due to safety constraints
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Cycle Removal-Based Scheduling

• We need to remove cycles while minimizing total passing time
• Min. Spanning Tree – acyclic subgraph with minimum sum of edge weights

• Iteratively remove max-cost edge whose removal doesn't disconnect graph

• Proposed algorithm is based on the above idea
• Iteratively remove max-cost Type-3 edges without violating constraints

• Ensuring liveness complicates the problem – deadlocks exist even in acyclic 
graphs, as shown earlier

• Need to efficiently handle cases where max-cost edge cannot be removed
• Backtracking and redoing is computationally expensive – equivalent to brute force
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Edge and Vertex States

Edge State: For an edge e,

ON - e is included in G'

OFF – e has been removed from G'

UNDECIDED – Will decide ON/OFF 
in current subproblem

DONTCARE – e not included 
in current subproblem

• All Type-1 and Type-2 edges 
always ON
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Vertex State: For a vertex v,

BLACK – Entering time scheduled

GRAY – Entering time depends on Type-3 
edges only

WHITE – Entering time can depend on 
any type of edges

• If any outgoing edge is ON, v is BLACK
• If v is BLACK, all edges through it 

must be ON/OFF
• If v is GRAY, v' must be BLACK if (v', v) 

is not a Type-3 edge



Vertex Entering Time

• Δi can't enter j before all earlier vehicles Δi' have passed

max{si',j + pi',j + wk}

• Additionally, need to wait for Δi' to move to next zone j'

max{si',j' - wk' + wk}

• Entering time is max of above two quantities – need to fulfill both

• For the first conflict zone on Δi's path, also depends on arrival time ai

• For v, depends on the earlier vertices u where (u,v) is an edge of G'
• Since G' is acyclic, compute in topological order
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Vertex Slack

• Maximum delay that can be added at vertex without changing the 
maximum leaving time tmax (i.e. the optimization objective)

• For the last vertex on the path of the last vehicle vi,j'

tmax – (si,j' + pi,j')

• For other vertices u, it is minimum of slack of all reachable vertices v 
where (u,v) edge in G'

• Compute reverse topologically for acyclic graph
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Defining the Cost of an Edge

Edge Cost: Delay incurred in tmax due to adding this edge in G'

Only need to look at cost of Type-3 edges, ek = (vi,j, vi',j)

cost[ek] = (si,j + pi,j + wk) - si',j - slack[vi',j]

(si,j + pi,j + wk) and si',j are start times for vi',j with & without ek

Compare with slack at vi',j to determine effect of ek on tmax

If the cost is positive, tmax will increase.

But if cost is negative, tmax won't change.
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Removal of Type-3 Edges

• Initialization
• Include Type-1 and Type-2 edges in G', set their states to ON

• Compute vertex entering times on G', leaving time of last vehicle as tmax

• Set Type-3 states to UNDECIDED, compute vertex slacks.

• Identify candidate edges for removal
• Leader vertex – vi,j where i is first vehicle on source lane, j is first conflict zone

• Candidate edges – UNDECIDED Type-3 edges with one vertex as a leader vertex

• Compute cost of these edges, and try to remove in decreasing order of cost
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Ensuring Deadlock-Freeness

• Type-3 edges always in pairs – exactly one of two must be included

• Remove one and verify deadlock-freeness - if it fails, swap the edges
• Use edge state variables to temporarily remove an edge

• If G' is deadlock-free, recompute vertex entering times and slacks
• Identify newly set GRAY vertices as leader vertices, and repeat

• If G' is not deadlock-free, need to re-evaluate entire assignment till ek

• Backtracking is expensive – divide into subproblems

• Schedule the first half of the vehicles arranged in increasing arrival time
• For Type-3 edges between the two halves, assume first half passes before second half

• Use the schedule of the first half while solving the second subproblem
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Proof of Correctness and Time Complexity

• Type-1 and Type-2 edges included in G' by default.

• Exactly one Type-3 edge is selected out of every pair

• Deadlock-freeness is verified on removing each Type-3 edge

• For the solution obtained by recursively dividing into subproblems
• No deadlock while merging both halves – we assume first passes before second

• Each subproblem is essentially applying the same algorithm on a smaller set

• Base case – only one vehicle: no Type-3 edges, so G' is feasible here

• Hence algorithm provably generates acyclic and deadlock-free G' always

• Time complexity of scheduling algorithm: O(E2logV)

25



Results
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For maximum 
ai equal to 60 
seconds

For maximum 
ai equal to 30 
seconds



Graph of TD and TL for various algorithms, with maximum ai = 30 seconds
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Experiments were run by the authors on a macOS Mojave notebook with 2.3 GHz Intel CPU and 8 GB memory.

Results



Results

Experiments were run by the authors on a macOS Mojave notebook with 2.3 GHz Intel CPU and 8 GB memory.

Graph of TD and TL for various algorithms, with maximum ai = 60 seconds



Results

Experiments were run by the authors on a macOS Mojave notebook with 2.3 GHz Intel CPU and 8 GB memory.

Graph of TD and TL for different number of conflict zones



Our Implementation

• Have implemented the algorithm as well as the simulation aspect of 
it, using C/C++

• Random traffic generator, intersections with 1-16 conflict zones, TCG 
graph generator, scheduler and deadlock checker (using RCG and 
Petri-Net).

• Traffic and Intersection generator, TCG graph generator and deadlock 
checking work

• Were unable to resolve some logical errors in the code – a certain 
step in the algorithm hasn’t been detailed in the paper

• Also can visualize the order of vehicle passing using SUMO simulator
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https://github.com/ashwin2802/CS637

https://github.com/ashwin2802/CS637


• Paper authors have suggested 
using Platform Independent 
Petri-net Editor (PIPE2)

• A GUI tool for easily 
modelling and visualizing 
Petri-nets and doing 
reachability analysis

• However, documentation is 
scarce and no way to 
interface it with code

31

http://pipe2.sourceforge.net/

http://pipe2.sourceforge.net/


Simulation of Urban Mobility

• Continuous traffic simulation package

• Completely open-source, highly portable

• Some features
• Simulation of public transport

• Simulation of logistics, individual people, trip 
chains

• Optimal Path Routing, pedestrian traffic 
modeling

• Bicycle, waterway and railway simulations
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https://www.eclipse.org/sumo/

https://www.eclipse.org/sumo/


Code Demos - Modelling

Sample Generated 
Traffic Distribution

Intersection Model for 4 conflict zones Lane Convention
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Code Demos - Modelling

An example Timing Conflict Graph
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Code Demos - Verification

Test TCG and expected RCG

RCG Verification Result

Expected Petri Net Model

Petri Net Verification Result
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SUMO Simulation

• Experimented with manually using SUMO

• Wrote code to control it through Traffic Control Interface(TraCI) using TCP.

• Currently doesn't work as intended, vehicles don't follow proper schedule

• Code is on the experimental_sumo branch of our Github repository

• First generates proper configuration files.

• Then runs a modified version of our original Petri-Net simulator in the 
background

• Updates the speed of the vehicles at each time step accordingly and 
communicates it to the GUI.
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https://github.com/ashwin2802/CS637/tree/experimental_sumo
https://github.com/ashwin2802/CS637/


Conclusions

• Presents a very general graph-based model for intersection 
management

• Can be applied to other types of intersections as well – the core 
concept is modelling the conflict zones discretely

• Presents an effective realtime scheduling algorithm based on cycle 
removal

• Pretty lightweight once the requisite data is available to the code

• Presents formal verification approaches for deadlock-freeness

• Challenges faced in implementation on an embedded system aren't 
taken into account
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Future Avenues

• Dynamic scheduling – scheduling vehicles as they arrive instead of in 
discrete intervals could reduce delays from chunk transitions

• Complex intersection topologies – designing algorithms to create conflict 
zone models out of any given intersection area

• Modelling dynamics – allowing vehicles to accelerate and decelerate 
instead of assuming constant speed will yield more realistic results

• Fault-proof scheduling – adversarial attacks on the intersection manager 
and issues arising from communication problems must be considered to 
ensure vehicles never receive an unsafe version of a verified schedule

• UAV Traffic Management – applying the same approach to manage a 
swarm of UAVs flying through a common airspace
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Work Related to Future Avenues
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Some interesting papers we read related to the future avenues discussed below are 
briefly described here:
Multi-Agent Path Finding for UAV Traffic Management [1]
• Models intersection management for UAVs as a conflict resolution problem
• Finding multiple paths on a graph satisfying safety constraints – MAPF solving
• Uses a similar batch processing approach – vehicles are scheduled in chunks
• However MAPF solving is NP-hard – computationally expensive in comparison

Intersection Auctions and Reservation-Based Control in Dynamic Traffic Assignment [2]
• Discusses Dynamic Traffic Assignment as a flow problem on a graph
• Tile-based reservation – vehicles place bids for conflicting tiles when they reach the 

front of their lane, based on the delay incurred if they don't get that tile instantly
• Intersection zones are divided radially instead of linearly

http://www.ifaamas.org/Proceedings/aamas2019/pdfs/p131.pdf
https://doi.org/10.3141/2497-04


Work Done Post Presentation

• Worked extensively on resolving the various issues in our 
implementation

• Experimented with visualizing solution schedules in SUMO

• Read some more papers related to future work avenues

• Added some more details to the presentation – demo screenshots 
and a few minor improvements
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Individual Member Contributions

• We have closely collaborated on the entire project. Each aspect was 
thoroughly discussed, edited and finalized with matching effort.

• However, for the sake of distribution:
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Kshitij Kabeer
• Slides: 2, 6-10, 15-16, 26-27, 30-32, 36, 41
• Code:

• Intersection and Random Traffic 
Generation

• Construction of Timing Conflict Graph
• Petri-net based Verification
• SUMO simulation (after presentation)

Ashwin Shenai
• Slides: 3-5, 11-14, 17-25, 28-29, 33-35, 37-40
• Code:

• Calculation of Edge costs, Vertex Slacks

• Cycle-removal based scheduler

• Construction of and verification using 
Resource Conflict Graphs

• SUMO simulation (before presentation)
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