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I. INTRODUCTION

Multiple network users contend over scarce communication
resources. Data transmission rates of different traffic sources
must be modulated dynamically to optimally use resources and
maximise user experience. This problem is called ”Congestion
Control”. Congestion Control is fundamental to computer
networking and has a crucial impact on user experience
for Internet services such as video streaming, voice-over-IP,
augmented and virtual reality, the Internet of Things, edge
computing, and more. Difficulties are amplified when traffic is
forwarded across multiple links, since networks greatly vary in
sizes, link capacities, network latency, level of competition be-
tween connections, etc. Even after three decades of research,no
largely unanimous decision about the right approaches to
dealing with congestion in the Internet. Network resources are
limited and resource contention is fairly ubiquitous. Incoming
traffic can easily exceed output bandwidth which can choke
the network. Congestion leads to long delays in data delivery,
wasted resources due to lost or dropped packets, and extremely
poor QoS(Quality of Service). Congestion may prevent or limit
useful communication which leads to congestive collapse.
Congestive Collapse was first observed in 1986 where the TCP
throughput from LCL to UCB (two-hop, 400 yards) dropped
from 32 kbps to 40 bps.

A. Internet Congestion Control

Communication networks vary a lot - a wireless connection
between a smartphone and an airport WiFi access point,
shared with hundreds of other smartphones, or a data-center
network operating at 100 Gb/s with very low propagation
delays. Internet traffic is heavy-tailed - 80% of the traffic is
carried by a few elephants while the remaining large number
of connections are mice. Ultimately many factors affect the
decisions that lead to resource allocation - traffic pattern, link
failure, dynamic latency, packet loss, and diverse application
requirements. With these many complexities, conventional
rule-based methods are reduced to heuristics with no guarantee
to solve the complex problem.

B. Conventional Approaches to Internet Congestion Control

1) Transmission Control Protocol(TCP): Transmission
Control Protocol is what provides the abstraction of a reliable
network running over an unreliable channel. TCP provides
an effective abstraction of a reliable network running over an

unreliable channel, hiding most of the complexity of network
communication from our applications: re-transmission of lost
data, in-order delivery, congestion control and avoidance, data
integrity, and more. TCP embodies (i) slow start: sender
can send twice the number of packets last sent each time a
good ACK is received, (ii) congestion avoidance: congestion
window size is capped at a threshold, and adjusted based on
the size of the successfully transmitted packets, and (iii) fast
re-transmission: receiver sends a dupACK on receiving an out-
of-sequence segment to inform sender of packet loss.

Fig. 1. Brief overview of TCP congestion policy.

2) Performance-oriented Congestion Control(PCC):
Performance-oriented Congestion Control (PCC) is a
congestion control architecture in which each sender
continuously observes the connection between its actions
and empirically experienced performance, enabling it to
consistently adopt actions that result in high performance.
PCC converges to a stable and fair equilibrium. Across
many real-world and challenging environments, PCC shows
consistent and often 10× performance improvement, with
better fairness and stability than TCP. PCC requires no router
hardware support or new packet format. Under PCC, send
messages at some rate and monitor the network. Based on the



ACKs received, correlate the rate using a carefully designed
utility function.

Fig. 2. PCC’s decision making.

3) Remy: In this approach, the protocol designer specifies
their prior knowledge or assumptions about the network and
an objective that the algorithm will try to achieve, e.g., high
throughput and low queueing delay. Remy then produces a
distributed algorithm—the control rules for the independent
endpoints—that tries to achieve this objective. Network is
modeled as Markovian - decision to send only depends on
packets in queue for each node. Traffic load is modeled
as a stochastic process - unicast flows between node pairs
are switched on/off. ⟨ack ewma, send ewma, rtt ratio⟩ →
⟨m, b, r⟩. Constructs lookup table to map states to actions such
that objective is optimized.

C. Motivating RL-based Congestion Control

Exploring RL based methods in the context of congestion
control is very important. If done efficiently, it can improve
the performance of a crucial component of the Internet’s
communication infrastructure, potentially impacting the user
experience of almost every performance sensitive Internet
service. It can provide a many new areas of application for for
RL schemes that poses novel real-world-motivated research
challenges. A congestion control protocol can be regarded
as mapping a locally-perceived history of feedback from the
receiver, which reflects past traffic and network conditions, to
the next choice of sending rate. This local history contains
information about patterns in traffic and network conditions
that can be exploited for better rate selection by learning the
mapping from experience via a deep RL approach. Offline
learning requires a dedicated offline training phase, and may
not perform well if the actual network differs remarkably
from the emulated one where offline training was carried
out, Since RL algorithms can incorporate real-time network

Fig. 3. Remy.

conditions and define actions accordingly, real-time control is
possible in RL algorithms. Compared to supervised learning
and unsupervised learning techniques, RL algorithms are more
responsive to environmental changes. RL-based CC algorithms
learn the CC rules directly based on different environment
information.

II. SURVEY OF RL-BASED CONGESTION CONTROL

A. Aurora

Congestion control is formulated as a sequential decision
making problem. Agent is the sender of traffic. Time is divided
into consecutive intervals called monitoring intervals. Actions
are changes to sending rate at the starting of every sending
interval which are then fixed for the entire interval. States
are bounded(fixed-length) histories of network statistics and
depends on the latency gradient - the derivative of latency
with respect to time, latency ratio - the ratio of the current
MI’s mean latency to minimum observed mean latency of any
MI in the connection’s history, and sending ratio - the ratio
of packets sent to packets acknowledged by the receiver. The
reward function is given by

10 ∗ throughput− 1000 ∗ latency − 2000 ∗ loss

where throughput is measured in packets per second, latency
in seconds and loss is the proportion of packages sent but not
acknowledged. The model is trained with the Proximal Policy
Optimization(PPO1) algorithm as the RL scheme(via stable
baselines).

B. QTCP

It integrates a reinforcement-based Q-learning framework
with TCP design in our approach called QTCP. QTCP enables
senders to gradually learn the optimal congestion control
policy in an on-line manner. QTCP does not need hard-coded



Fig. 4. Architecture for Aurora.

rules, and can therefore generalize to a variety of different
networking scenarios. It overcomes the limitation arising from
the rule-based design principle, where the performance is
linked to a pre-decided mapping between the observed state of
the network to the corresponding actions. Rule-based protocols
are unable to adapt their behavior in new environments or
learn from experience for better performance and so do not
generalize well under a wide range of network scenarios.
States are unique profile of network conditions evaluated
using avg send - the average interval between sending two
packets, avg ack - the average interval between receiving two
consecutive ACKs, and avg rtt - the average RTT. Actions
are the changes in the congestion window size(cwnd) by
0, −1, +10. The reward is based on change in the utility
in consecutive intervals. The utility function is given by

α ∗ log(throughput)− δ ∗ log(RTT )

where α and δ control the relative weight or importance of
throughput and RTT. The model is trained with Q-Learning
algorithm as the RL scheme. QTCP outperforms the traditional
rule-based TCP by providing 59.5 percent higher throughput
while maintaining low transmission latency.

C. RL-TCP

It designs a learning-based TCP CC schemes for wired
networks with under-buffered bottleneck links, a reinforce-
ment learning (RL) based TCP CC (RL-TCP). RL-TCP
tailors the design of states and action space towards net-
works with under-buffered bottleneck links. Also, RL-TCP
treats the temporal credit assignment of reward according to
TCP dynamics. The states are defined using five variables,
ewma send, ewma ack, avg rtt, ssthresh, cwnd. Actions
are the changes in the congestion window size(cwnd) by

Fig. 5. QTCP Architecture.

−1, 0, +1, +3. The reward is based on the utility in
consecutive timesteps. The utility function is given by

log(throughput)− log(B)− δ1 ∗ log(RTT −RTTmin)

+δ2 ∗ log(1− loss rate)

where B is the bottleneck bandwidth, and δ1 and δ2 are
adjustable coefficients. To learn the Q-function Q(s, a), it
uses SARSA, a popular on-policy temporal difference (TD)
learning algorithm for value-based RL. It achieves a better
tradeoff between throughput and delay, under various simu-
lated network scenarios.

Fig. 6. TCP CC Agent.



D. RAX

It proposes Reactive Adaptive eXperience based conges-
tion control (RAX), a method of congestion control that
uses online reinforcement learning to maintain an optimum
congestion window with respect to a given reward function
and based on current network conditions. It uses a neural
network based approach that can be initialized either with
random weights or with a previously trained neural network
to improve stability and convergence time. It proposes Partial
Action Learning(PAL), a formulation of Deep RL that supports
delayed and partial rewards. PAL can handle delay in rewards.
One action generates several partial actions. These generate
partial rewards on interacting with the environment. Agent
performs a new action on receiving a partial reward. When
all partial rewards of an action are received, the RL algorithm
proceeds to train the agent.The states are defined using the
EWMA of Time between last two ACKs received, RTT of
last received packet, indicator for if the last packet was lost,
current cwnd. Actions are real numbers that represents the
change to the cwnd. Reward is based on sum of all sent bytes,
received with ACK bytes, time between previous and current
ACK. The RL algorithm used is Actor Critic (not explicitly
specified), and qt. Rax converges to a stable, close-to-optimum
solution.

Fig. 7. Partial Action Learning.

E. Eagle

Eagle is a new congestion control algorithm to refine exist-
ing heuristics. Eagle takes advantage of expert knowledge from
an existing algorithm, and uses deep reinforcement learning
(DRL) to train a generalized model with the hope of learning
from an expert. Learning by trial-and-error may not be as
efficient as imitating a teacher; by the same token, DRL alone
is not enough to guarantee good performance. Eagle seeks
help from an expert congestion control algorithm, BBR, to

help train a long-short term memory (LSTM) neural network
in the DRL agent, with the hope of making decisions that can
be as good as or even better than the expert. With an extensive
array of experiments, it is discovered that Eagle is able to
match and even outperform the performance of its teacher,
and outperformed a large number of recent congestion control
algorithms by a considerable margin. The states are defined
using the summary of the last four timesteps (three RTTs per
timestep) - whether agent faced delay, ewma of loss rate, ewma
of latency ratio, difference between number of increases and
decreases in sending rate from the point of delay. The actions
are defined as: increase sending rate by 2.89 and cwnd by
2, decrease sending rate by 1.25 and cwnd by 1.25, or do
nothing. The rewards are based on change in delay and other
state parameters. The Cross-entropy method is used as the RL
algorithm.

Fig. 8. Eagle Architecture Overview.

F. MVSFT-RL

It proposes to formulate congestion control with an asyn-
chronous RL agent that handles delayed actions. MVFST-
RL is a scalable framework for congestion control in the
QUIC transport protocol that leverages state-of-the-art in asyn-
chronous RL training with off-policy correction. It analyzes
modeling improvements to mitigate the deviation from Marko-
vian dynamics, and evaluate the method on emulated networks
from the Pantheon benchmark platform. The states are defined
as 100ms summary of network statistics with history of actions
taken - 20 statistics per ACK. The actions are defined as

cwnd → {cwnd, cwnd/2, cwnd ∗ 2, cwnd− 10, cwnd+ 10}

The rewards are defined as

log(t+ ϵ)− β × log(d+ ϵ)



where t is average throughput, d is average max delay during
the window, the parameter β trades-off between the t and d,
and ϵ is a small value to ensure numerical stability. The RL
algorithm used is IMPALA.

Fig. 9. MVSFT Architecture Overview.

G. DeepCC

DeepCC leverages advanced deep reinforcement learning
(DRL) techniques to let machines automatically learn how
to steer throughput-oriented TCP algorithms toward achieving
applications’ desired delays in a highly dynamic network such
as the cellular network.DeepCC plug-in is used to boost the
performance of various old and new TCP schemes includ-
ing TCP Cubic, Google’s BBR, TCP Westwood, and TCP
Illinois in cellular networks. Through both extensive trace-
based evaluations and real-world experiments, it is shown that
not only DeepCC can significantly improve the performance
of TCP schemes, but also after accompanied by DeepCC,
these schemes can outperform state-of-the-art TCP protocols
including new clean-slate machine learning-based designs and
the ones designed solely for cellular networks. The states
are defined as the fixed-length history of network statistics -
average throughput, average packet delay, number of samples
for averaging, cwnd. The action is to determine α to set
cwnd = 2α × cwndtcp. The reward is defined as the delay-
throughput product, negative if delay is above target else
positive. The RL algorithm used is the Deep Deterministic
Policy Gradient(DDPG).

H. Orca

A pragmatic and evolutionary approach combining clas-
sic congestion control strategies and advanced modern deep
reinforcement learning (DRL) techniques and introduce a
novel hybrid congestion control for the Internet named Orca.
Through extensive experiments done over global testbeds on

Fig. 10. DeepCC high-level overview.

the Internet and various locally emulated network conditions,
it is demonstrated that Orca is adaptive and achieves consistent
high performance in different network conditions, while it can
significantly alleviate the issues and problems of its clean-
slate learning-based counterparts. The states are defined as the
fixed-length history of network statistics - 9 per timestep. The
action is to determine α to set cwnd = 2α × cwndtcp. The
reward is defined as

throughput − ζ × loss/clip(dmin, delay)
tpmax/dmin

where ζ is a coefficient determining the relative impact of the
loss rate compared to the throughput rate.

Fig. 11. Orca architecture and high-level overview.



I. Multi-Objective Congestion Control(MOCC)

MOCC is the first multi-objective congestion control al-
gorithm that attempts to address this question. The core
of MOCC is a novel multi-objective reinforcement learning
framework for CC to automatically learn the correlations be-
tween different application requirements and the correspond-
ing optimal control policies. Under this framework, MOCC
further applies transfer learning to transfer the knowledge
from past experience to new applications, quickly adapting
itself to a new objective even if it is unforeseen. It provides
both user-space and kernel-space implementation of MOCC.
Real-world Internet experiments and extensive simulations
show that MOCC supports well multi-objective, competing
or outperforming the best existing CC algorithms on each
individual objectives, and quickly adapting to new application
objectives in 288 seconds (14.2× faster than prior work) with-
out compromising old ones. The states are defined as the fixed-
length history of network statistics - sending ratio, latency
ratio, latency gradient. The actions are defined as change in
sending rate, which are multiplicative. The rewards are defined
as dynamically parameterized with multi-objective weights
and normalized performance measures on throughput, latency
and packet loss rate. The RL algorithm used is Proximal Policy
Optimization(PPO).

Fig. 12. MOCC architecture.

III. EXPERIMENTS

We present various experiments on Aurora, which uses
deep neural networks as function approximators for RL-based
congestion control. Tests were run using Pantheon [3], which
uses Mahimahi shells to emulate network links. All tests
were run locally via emulation on an Ubuntu 18.04 VM.
For the brevity of this report, we only detail the nature of
the tests run for each model variation and the details of
the experiments run. The results can be found in the final

presentation slides submitted along with this report (and also
hosted here). The code used/written in the project is hosted at
https://github.com/ashwin2802/EE698V

A. Testing Scenarios

All tests are run on a single emulated link for a fixed
duration of 30s.

• Test 1: Target throughput is kept constant at 12 Mbps.
• Test 2: Target throughput is kept constant at 12 Mbps.

Results are averaged over 5 runs
• Test 3: Target throughput is kept constant at 12 Mbps. 3

competing flows are simulated in the same link
• Test 4: Target throughput is modeled as a Poisson dis-

tributed RV. The average throughput is around 2-3 Mbps.
• Test 5: Target throughput is kept constant at 60 Mbps.

B. Model Architecture

To experiment with the effect of changing the model archi-
tecture, we trained the following models with PPO. Note that
the actor and critic network architectures are kept the same.

• Experiment 1: [64, 32] - This is the default architecture
used.

• Experiment 2: [128. 8] - This architecture was used to
test the effect of widening the network layers. Perfor-
mance improvement in Test 4 was observed.

• Experiment 3: [64, 32, 64] - This architecture was
used to test the effect using more network layers. No
significant performance improvement was observed.

C. RL Algorithm

To compare the performance of various RL algorithms with
this problem, we trained models with fixed architecture of [64,
32] with the following algorithms:

• Experiment 1: PPO - This is the algorithm used in the
paper, and the default setting.

• Experiment 2: TD3
• Experiment 3: SAC
We observed that TD3 and SAC required fewer timesteps as

compared to PPO to achieve the same level of convergence.
However the convergence achieved in both these algorithms
was not reliable, as we observed significiant levels of di-
vergence upon further training. The overall performance of
the models trained with TD3 and SAC was worser than the
models trained with PPO. Hence, we concluded that PPO is
the preferred algorithm to use for this problem.

D. Reward Function

The following reward functions were experimented with.
• Experiment 1:

10 ∗ throughput− 1000 ∗ latency − 2000 ∗ loss

This is the default reward function suggested in the paper
• Experiment 2:

20 ∗ throughput− 1000 ∗ latency − 2000 ∗ loss

https://docs.google.com/presentation/d/1YoORHVqMw60lmPNCHSDeliWSTYOkoLUNPnRk8dQTgLw/edit?usp=sharing
https://github.com/ashwin2802/EE698V


We expected the model with this reward function to
perform better on throughput. However, no significant
performance improvements were observed.

• Experiment 3:

5 ∗ throughput− 1000 ∗ latency − 2000 ∗ loss

We expected the model with this reward function to
perform better on latency. However, no significant per-
formance improvements were observed.

IV. ROADBLOCKS

1) Code/libraries used are outdated. Python2 used in place
of Python3 and Tensorflow 1.14 used in place of Ten-
sorflow 2+.

2) Outdated kernel issues with Orca and DeepCC.
3) All models are trained on a CPU.

V. FURTHER AVENUES

1) Model based approaches - Integrating a model of the
equivalent MDP along with the model.

2) Meta Learning - Training the model with parametrizable
weights to allow it adapt to changes in network condi-
tions without retraining.

3) Reward Engineering - looking at rewards other than just
linear combinations of the metrics

4) Competitive Learning - using other models/CC algo-
rithms to help the model benchmark its performance
while learning

5) Redeveloping the frameworks to support newer software
versions
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