RL-based Internet Congestion Control

Ashwin Shenai (180156), Astitva Chaudhary (180157) EE698V: Advanced Topics in ML for Communication Networks Fall 2022

Project Goals: Proposed

- Implement paper on Multi-Objective Congestion Control.
- Integrate MOCC with Orca and DeepCC (if time permits).
- Study performance of new architecture with different RL algorithms DDPG, TD3, PPO, SAC, etc.

Pantheon

- Pantheon of Congestion Control: It is a community evaluation platform for academic research on congestion control that reduces the need to reinvent the wheel in the evaluations of new internet congestion-control algorithms.
- Pantheon provides:

1) A collection of 17 working implementations of congestion-control schemes, all of them continuously verified to compile and run by a continuous integration system.

2) A testbed of measurement nodes on wired and cellular networks.

3) A collection of network emulators that can be used to test congestion-control schemes locally.

- The Pantheon performs several types of measurements on a roughly weekly basis. All measurements run a particular congestion-control scheme between two endpoints, measuring the departure time of each IP datagram (at the sender) and the arrival time of the same IP datagram (at the receiver), if it arrives. These raw logs are available for each measurement. For each scheme, it also calculates and plots aggregate statistics, e.g., the throughput, one-way delay (95th percentile), loss rate, etc.
- To run a new scheme, submit a pull request, the Travis-CI system will automatically verify that the scheme compiles and runs in emulation.

Test 2

Multiple runs

local test in mahimahi, 5 runs of 30s each per scheme

Multiple flows

Test 4

Poisson distributed trace

local test in mahimahi, 1 run of 30s each per scheme

Test 5

60 Mbps trace

Aurora

- RL Algorithm: Proximal Policy Optimization (PPO1)
- Architecture (of NN): [32, 16]
- History Length: 10
- Features: ['sent latency inflation', 'latency ratio', 'send ratio']
- Gamma: 0.99

Aurora: Implementation Details

- States: Fixed-length history of statistics vector latency gradient, latency ratio, sending ratio
- Actions: Adjust sending rate every monitoring interval
- Reward: 10*throughput 1000*latency 2000*loss
- RL Algorithm: Proximal Policy Optimization. The PPO algorithm combines ideas from A2C (having multiple workers) and TRPO (it uses a trust region to improve the actor). The main idea is that after an update, the main policy should not be too far from the old policy. For that, PPO uses clipping to avoid too large updates. It empirically performs at least as close to TRPO.

PPO [64, 32]: Training Statistics

Orange graph - First checkpoint, Green graph - Last checkpoint

PPO [64, 32]: Training Statistics

clip_factor

entropy_loss tag: loss/entropy_loss

loss tag: loss/loss

C 🔳 🖸

value_function_loss tag: loss/value_function_loss

Test 1: PPO [64, 32]

Test 2: PPO [64, 32]

		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate (%)
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	5	0.98	3.25	0.00

Test 3: PPO [64, 32]

		mean	avg tput (N	fbit/s)	mean 9	5th-%ile del	ay (ms)	mea	an loss rate	(%)
scheme	# runs	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3
PCC-RL	1	0.89	0.80	0.97	2.45	3.28	2.91	0.00	0.00	0.00

Test 4: PPO [64, 32]

		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate $(\%)$
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	1	3.01	1508.57	8.92

Test 5: PPO [64,32]

		mean ang opae (more/b)	mean your your denay (mb)	1110011 1000 10
scheme	# runs	flow 1	flow 1	flow
PCC-RL	1	0.85	1.37	0.00
			1	

Aurora: Network Architecture Tests

RL Algorithm: Proximal Policy Optimization (PPO1)

```
Architecture (of NN): [32, 16] → [128, 8]
```

History Length: 10

Features: ['sent latency inflation', 'latency ratio', 'send ratio']

Gamma: 0.99

PPO [128, 8]: Training Statistics

All six training checkpoints - discounted rewards increase with each checkpoint

PPO [128, 8]: Training Statistics

200k

400k

loss

tag: loss/loss

1.5e+3

1.3e+3

1.1e+3

900

700

C 🔳 🖸

0

clip_factor tag: loss/clip_factor

policy_gradient_loss tag: loss/policy_gradient_loss

entropy_loss tag: loss/entropy_loss

value_function_loss

tag: loss/value_function_loss

Test 1: PPO [128, 8]

scheme	# runs	mean avg tput (Mbit/s) flow 1	mean 95th-%ile delay (ms) flow 1	mean loss rate (%) flow 1
PCC-RL	1	0.93	2.35	0.00

Test 2: PPO [128, 8]

1		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate (%)
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	5	9.63	2880.08	11.33

Test 3: PPO [128, 8]

		mean	avg tput (N	(bit/s)	mean 9	5th-%ile del	ay (ms)	mea	an loss rate	(%)
scheme	# runs	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3
PCC-RL	1	0.83	8.75	3.74	2583.62	2609.93	2625.09	2.07	1.77	4.35

Test 4: PPO [128, 8]

	l l	mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate (%)
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	1	3.02	4835.24	16.1 <mark>3</mark>

Aurora: Network Architecture Tests

RL Algorithm: Proximal Policy Optimization (PPO1)

```
Architecture (of NN): [32, 16] → [64, 32, 64]
```

History Length: 10

Features: ['sent latency inflation', 'latency ratio', 'send ratio']

Gamma: 0.99

PPO [64, 32, 64]: Training Statistics

All six training checkpoints - discounted rewards increase with each checkpoint

PPO [64, 32, 64]: Training Statistics

policy_gradient_loss tag: loss/policy_gradient_loss

entropy_loss tag: loss/entropy_loss

loss tag: loss/loss

value_function_loss tag: loss/value_function_loss

Test 1: PPO [64, 32, 64]

	í I	mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate (%)
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	1	0.62	4.31	0.00

Test 2: PPO [64, 32, 64]

161		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate $(\%)$
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	5	0.59	2.46	0.00

```
Test 3: PPO [64, 32, 64]
```


Test 4: PPO [64, 32, 64]

1		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate $(\%)$
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	1	0.58	1.35	0.00

Aurora: TD3

- RL Algorithm: Twin Delayed Deep Deterministic Policy Gradient
- Architecture (of NN): [64, 32]
- History Length: 10
- Features:
- Gamma: 0.99
- Twin Delayed Deep Deterministic Policy Gradient: TD3 addresses function approximation error in Actor-Critic methods. TD3 is a direct successor of DDPG and improves it using three major tricks: clipped Q-Learning, delayed policy update, and target policy smoothing. These tricks result in substantially improved performance over baseline DDPG.

TD3 [64, 32]: Training Statistics

loss af1_loss af2_loss learning_rate policy_loss tag: loss/learning_rate tag: loss/policy_loss tag: loss/qf1_loss tag: loss/qf2_loss 40 40 12 0.6 30 30 8 0.2 4 20 20 -0.2 0 10 10 -0.6 -4 0 -1 .8 C = 🖸 C 🔳 🖸 C 🔳 🖸 C = 🖸

TD3: Divergence

episode_reward

Orange Graph - First Checkpoint, Blue Graph - Last Checkpoint

:: 🔳 ⊡

loss

Test 1: TD3 [64, 32]

		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate $(\%)$	
scheme	# runs	flow 1	flow 1	flow 1	
PCC-RL	1	1.62	1934.85	0.00	_

Test 2: TD3 [64, 32]

245		mean avg tput $(Mbit/s)$	mean 95th-%ile delay (ms)	mean loss rate $(\%)$
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	5	1.81	349.16	0.27

Test 3: TD3 [64, 32]

		mean	avg tput (M	fbit/s)	mean 9	5th-%ile del	ay (ms)	mea	an loss rate	(%)
scheme	# runs	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3
PCC-RL	1	0.55	0.54	0.54	3.50	2.37	2.34	0.00	0.00	0.15

Test 4: TD3 [64, 32]

		mean	avg tput (N	fbit/s)	mean 9	5th-%ile del	ay (ms)	mea	an loss rate	(%)
scheme	# runs	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3
PCC-RL	1	2.53	1.02	9.76	2820.67	7738.59	8570.39	6.41	95.32	32.84

Test 5: TD3 [64,32]

		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate (%)
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	1	5.94	111.12	3.28

Aurora: SAC

- RL Algorithm: Soft Actor Critic
- Architecture (of NN): [64, 32]
- History Length: 10
- Features:
- Gamma: 0.99
- Soft Actor Critic: SAC is an off-policy maximum entropy deep reinforcement learning with a stochastic actor. SAC incorporates the double Q-learning trick from TD3. A key feature of SAC, and a major difference with common RL algorithms, is that it is trained to maximise a trade-off between expected return and entropy, a measure of randomness in the policy.

SAC [64, 32]: Training Statistics

53

policy_loss tag: loss/policy_loss

ent_coef_loss tag: loss/ent_coef_loss

C 🔳 🖸

0 5k 10k 15k 20k 25k 30k 35k 40k

50

40

30

20

10

0

12 🔳 ⊡

learning_rate tag: loss/learning_rate

value_loss tag: loss/value_loss

SAC: Divergence

ent_coef_loss tag: loss/ent_coef_loss

C 🔳 🖸

policy_loss tag: loss/policy_loss

:: 🔳 ⊡

0 🔳 🖸

entropy

tag: loss/entropy

1

8.0

0.6

0.4

0.2

0

learning_rate tag: loss/learning_rate

C 🔳 🖸

value_loss tag: loss/value_loss

Test 1: SAC [64, 32]

Test 2: SAC [64, 32]

Test 3: SAC [64, 32]

		mean	avg tput (N	IDIt/S)	mean 9	otn-70ne del	ay (ms)	mea	an loss rate	(70)
scheme	# runs	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3	flow 1	flow 2	flow 3
PCC-RL	1	2.53	1.02	9.76	2820.67	7738.59	8570.39	6.41	95.32	32.84

Test 4: SAC [64, 32]

		mean avg tput (Mbit/s)	mean 95th-%ile delay (ms)	mean loss rate (%)
scheme	# runs	flow 1	flow 1	flow 1
PCC-RL	1	2.95	24339.69	88.31

Test 5: SAC [64,32]

Multi-Objective: Reward Engineering

Reward is a linear combination of throughput, latency, loss

How does the performance change with the individual weights

Reward in earlier experiments: 10*throughput - 1000*latency - 2000*loss

High throughput (expected): 20*throughput - 1000*latency - 2000*loss

Low latency (expected): 5*throughput - 1000*latency - 2000*loss

PPO [64, 32] HighT: Training Statistics

Blue graph - First Checkpoint, Pink graph - Last Checkpoint

PPO [64, 32] HighT: Training Statistics

:: 🔳 ⊡

policy_gradient_loss tag: loss/policy_gradient_loss

0 🔳 🖸

value_function_loss tag: loss/value_function_loss

53

tag: loss/loss

Test 1: PPO [64, 32] HighT

Test 2: PPO [64, 32] HighT


```
Test 3: PPO [64, 32] HighT
```


Test 4: PPO [64, 32] HighT

Test 5: PPO [64,32] HighT

PPO [64, 32] LowLat: Training Statistics

Blue Graph - First Checkpoint, Grey Graph - Last Checkpoint

PPO [64, 32] LowLat: Training Statistics

loss

value_function_loss tag: loss/value_function_loss

Test 1: PPO [64, 32] LowLat

Test 2: PPO [64, 32] LowLat

Test 3: PPO [64, 32] LowLat

Test 4: PPO [64, 32] LowLat

Test 5: PPO [64,32] LowLat

Roadblocks

- Code/libraries used are outdated
 - Python2 -> Python3
 - Tensorflow 1.14 -> Tensorflow 2+
- Outdated kernel issues with Orca and DeepCC
- All models trained on CPU

Further Avenues

- Model-based approaches
- Meta-Learning
- Reward Engineering
- Competitive Learning

References

[1] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, Aviv Tamar. A Deep Reinforcement Learning Perspective on Internet Congestion Control. *Proceedings of the 36th International Conference on Machine Learning*, PMLR 97:3050-3059, 2019.

[2] Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai Chen, and Xin Jin. 2022. Multi-objective congestion control. In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys '22). Association for Computing Machinery, New York, NY, USA, 218–235. https://doi.org/10.1145/3492321.3519593

[3] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis, and Keith Winstein. 2018. Pantheon: the training ground for internet congestion-control research. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '18). USENIX Association, USA, 731–743.

[4] https://stable-baselines.readthedocs.io/en/master/index.html

[5] https://spinningup.openai.com/en/latest/index.html