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Project Goals: Proposed

● Implement paper on Multi-Objective Congestion Control.
● Integrate MOCC with Orca and DeepCC (if time permits).
● Study performance of new architecture with different RL algorithms - DDPG, 

TD3, PPO, SAC, etc.



Pantheon

● Pantheon of Congestion Control: It is a community evaluation platform for academic research on congestion control 
that reduces the need to reinvent the wheel in the evaluations of new internet congestion-control algorithms.

● Pantheon provides: 
1) A collection of 17 working implementations of congestion-control schemes, all of them continuously verified to 
compile and run by a continuous integration system.

2) A testbed of measurement nodes on wired and cellular networks.

3) A collection of network emulators that can be used to test congestion-control schemes locally.

● The Pantheon performs several types of measurements on a roughly weekly basis. All measurements run a particular 
congestion-control scheme between two endpoints, measuring the departure time of each IP datagram (at the sender) 
and the arrival time of the same IP datagram (at the receiver), if it arrives. These raw logs are available for each 
measurement. For each scheme, it also calculates and plots aggregate statistics, e.g., the throughput, one-way delay 
(95th percentile), loss rate, etc.

● To run a new scheme, submit a pull request, the Travis-CI system will automatically verify that the scheme compiles 
and runs in emulation.



Test 1

12 Mbps trace





Test 2

Multiple runs





Test 3

Multiple flows





Test 4

Poisson distributed trace





Test 5

60 Mbps trace





Aurora

● RL Algorithm: Proximal Policy Optimization (PPO1)
● Architecture (of NN): [32, 16]
● History Length: 10
● Features: [‘sent latency inflation’, ‘latency ratio’, ‘send ratio’]
● Gamma:  0.99



Aurora: Implementation Details

● States: Fixed-length history of statistics vector - latency gradient, latency ratio,  
sending ratio

● Actions: Adjust sending rate every monitoring interval
● Reward: 10*throughput - 1000*latency - 2000*loss
● RL Algorithm: Proximal Policy Optimization. The PPO algorithm combines ideas 

from A2C (having multiple workers) and TRPO (it uses a trust region to improve 
the actor). The main idea is that after an update, the main policy should not be 
too far from the old policy. For that, PPO uses clipping to avoid too large 
updates. It empirically performs at least as close to TRPO.



PPO [64, 32]: Training Statistics

Orange graph - First checkpoint, Green graph - Last checkpoint



PPO [64, 32]: Training Statistics



Test 1: PPO [64, 32]



Test 2: PPO [64, 32]



Test 3: PPO [64, 32]



Test 4: PPO [64, 32]



Test 5: PPO [64,32]



Aurora: Network Architecture Tests

RL Algorithm: Proximal Policy Optimization (PPO1)

Architecture (of NN): [32, 16] → [128, 8]

History Length: 10

Features: [‘sent latency inflation’, ‘latency ratio’, ‘send ratio’]

Gamma:  0.99



PPO [128, 8]: Training Statistics

All six training checkpoints - discounted rewards increase with each checkpoint



PPO [128, 8]: Training Statistics



Test 1: PPO [128, 8]



Test 2: PPO [128, 8]



Test 3: PPO [128, 8]



Test 4: PPO [128, 8]



Test 5: PPO [128,8]



Aurora: Network Architecture Tests

RL Algorithm: Proximal Policy Optimization (PPO1)

Architecture (of NN): [32, 16] → [64, 32, 64]

History Length: 10

Features: [‘sent latency inflation’, ‘latency ratio’, ‘send ratio’]

Gamma:  0.99



PPO [64, 32, 64]: Training Statistics

All six training checkpoints - discounted rewards increase with each checkpoint



PPO [64, 32, 64]: Training Statistics



Test 1: PPO [64, 32, 64]



Test 2: PPO [64, 32, 64]



Test 3: PPO [64, 32, 64]



Test 4: PPO [64, 32, 64]



Test 5: PPO [64, 32, 64]



Aurora: TD3

● RL Algorithm: Twin Delayed Deep Deterministic Policy Gradient
● Architecture (of NN): [64, 32]
● History Length: 10
● Features:
● Gamma: 0.99
● Twin Delayed Deep Deterministic Policy Gradient: TD3 addresses function 

approximation error in Actor-Critic methods. TD3 is a direct successor of DDPG and 
improves it using three major tricks: clipped Q-Learning, delayed policy update, and 
target policy smoothing. These tricks result in substantially improved performance 
over baseline DDPG.



TD3 [64, 32]: Training Statistics

Orange Graph - First Checkpoint, Green Graph - Last Checkpoint



TD3: Divergence

Tensorboard

Orange Graph - First Checkpoint, Blue Graph - Last Checkpoint



Test 1: TD3 [64, 32]



Test 2: TD3 [64, 32]



Test 3: TD3 [64, 32]



Test 4: TD3 [64, 32]



Test 5: TD3 [64,32]



Aurora: SAC

● RL Algorithm: Soft Actor Critic
● Architecture (of NN): [64, 32]
● History Length: 10
● Features:
● Gamma: 0.99
● Soft Actor Critic: SAC is an off-policy maximum entropy deep reinforcement 

learning with a stochastic actor. SAC incorporates the double Q-learning trick 
from TD3. A key feature of SAC, and a major difference with common RL 
algorithms, is that it is trained to maximise a trade-off between expected return 
and entropy, a measure of randomness in the policy. 



SAC [64, 32]: Training Statistics



SAC: Divergence



Test 1: SAC [64, 32]



Test 2: SAC [64, 32]



Test 3: SAC [64, 32]



Test 4: SAC [64, 32]



Test 5: SAC [64,32]



Multi-Objective: Reward Engineering

Reward is a linear combination of throughput, latency, loss

How does the performance change with the individual weights

Reward in earlier experiments: 10*throughput - 1000*latency - 2000*loss

High throughput (expected): 20*throughput - 1000*latency - 2000*loss

Low latency (expected): 5*throughput - 1000*latency - 2000*loss



PPO [64, 32] HighT: Training Statistics

Blue graph - First Checkpoint, Pink graph - Last Checkpoint



PPO [64, 32] HighT: Training Statistics



Test 1: PPO [64, 32] HighT



Test 2: PPO [64, 32] HighT



Test 3: PPO [64, 32] HighT



Test 4: PPO [64, 32] HighT



Test 5: PPO [64,32] HighT



PPO [64, 32] LowLat: Training Statistics

Blue Graph - First Checkpoint, Grey Graph - Last Checkpoint



PPO [64, 32] LowLat: Training Statistics



Test 1: PPO [64, 32] LowLat



Test 2: PPO [64, 32] LowLat



Test 3: PPO [64, 32] LowLat



Test 4: PPO [64, 32] LowLat



Test 5: PPO [64,32] LowLat



Roadblocks

● Code/libraries used are outdated
○ Python2 -> Python3
○ Tensorflow 1.14 -> Tensorflow 2+

● Outdated kernel issues with Orca and DeepCC
● All models trained on CPU



Further Avenues

● Model-based approaches
● Meta-Learning
● Reward Engineering
● Competitive Learning
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