
RL-based Internet Congestion Control

Ashwin Shenai (180156), Astitva Chaudhary (180157)
EE698V: Advanced Topics in ML for Communication Networks
Fall 2022

Project Goals: Proposed

● Implement paper on Multi-Objective Congestion Control.
● Integrate MOCC with Orca and DeepCC (if time permits).
● Study performance of new architecture with different RL algorithms - DDPG,

TD3, PPO, SAC, etc.

Pantheon

● Pantheon of Congestion Control: It is a community evaluation platform for academic research on congestion control
that reduces the need to reinvent the wheel in the evaluations of new internet congestion-control algorithms.

● Pantheon provides:
1) A collection of 17 working implementations of congestion-control schemes, all of them continuously verified to
compile and run by a continuous integration system.

2) A testbed of measurement nodes on wired and cellular networks.

3) A collection of network emulators that can be used to test congestion-control schemes locally.

● The Pantheon performs several types of measurements on a roughly weekly basis. All measurements run a particular
congestion-control scheme between two endpoints, measuring the departure time of each IP datagram (at the sender)
and the arrival time of the same IP datagram (at the receiver), if it arrives. These raw logs are available for each
measurement. For each scheme, it also calculates and plots aggregate statistics, e.g., the throughput, one-way delay
(95th percentile), loss rate, etc.

● To run a new scheme, submit a pull request, the Travis-CI system will automatically verify that the scheme compiles
and runs in emulation.

Test 1

12 Mbps trace

Test 2

Multiple runs

Test 3

Multiple flows

Test 4

Poisson distributed trace

Test 5

60 Mbps trace

Aurora

● RL Algorithm: Proximal Policy Optimization (PPO1)
● Architecture (of NN): [32, 16]
● History Length: 10
● Features: [‘sent latency inflation’, ‘latency ratio’, ‘send ratio’]
● Gamma: 0.99

Aurora: Implementation Details

● States: Fixed-length history of statistics vector - latency gradient, latency ratio,
sending ratio

● Actions: Adjust sending rate every monitoring interval
● Reward: 10*throughput - 1000*latency - 2000*loss
● RL Algorithm: Proximal Policy Optimization. The PPO algorithm combines ideas

from A2C (having multiple workers) and TRPO (it uses a trust region to improve
the actor). The main idea is that after an update, the main policy should not be
too far from the old policy. For that, PPO uses clipping to avoid too large
updates. It empirically performs at least as close to TRPO.

PPO [64, 32]: Training Statistics

Orange graph - First checkpoint, Green graph - Last checkpoint

PPO [64, 32]: Training Statistics

Test 1: PPO [64, 32]

Test 2: PPO [64, 32]

Test 3: PPO [64, 32]

Test 4: PPO [64, 32]

Test 5: PPO [64,32]

Aurora: Network Architecture Tests

RL Algorithm: Proximal Policy Optimization (PPO1)

Architecture (of NN): [32, 16] → [128, 8]

History Length: 10

Features: [‘sent latency inflation’, ‘latency ratio’, ‘send ratio’]

Gamma: 0.99

PPO [128, 8]: Training Statistics

All six training checkpoints - discounted rewards increase with each checkpoint

PPO [128, 8]: Training Statistics

Test 1: PPO [128, 8]

Test 2: PPO [128, 8]

Test 3: PPO [128, 8]

Test 4: PPO [128, 8]

Test 5: PPO [128,8]

Aurora: Network Architecture Tests

RL Algorithm: Proximal Policy Optimization (PPO1)

Architecture (of NN): [32, 16] → [64, 32, 64]

History Length: 10

Features: [‘sent latency inflation’, ‘latency ratio’, ‘send ratio’]

Gamma: 0.99

PPO [64, 32, 64]: Training Statistics

All six training checkpoints - discounted rewards increase with each checkpoint

PPO [64, 32, 64]: Training Statistics

Test 1: PPO [64, 32, 64]

Test 2: PPO [64, 32, 64]

Test 3: PPO [64, 32, 64]

Test 4: PPO [64, 32, 64]

Test 5: PPO [64, 32, 64]

Aurora: TD3

● RL Algorithm: Twin Delayed Deep Deterministic Policy Gradient
● Architecture (of NN): [64, 32]
● History Length: 10
● Features:
● Gamma: 0.99
● Twin Delayed Deep Deterministic Policy Gradient: TD3 addresses function

approximation error in Actor-Critic methods. TD3 is a direct successor of DDPG and
improves it using three major tricks: clipped Q-Learning, delayed policy update, and
target policy smoothing. These tricks result in substantially improved performance
over baseline DDPG.

TD3 [64, 32]: Training Statistics

Orange Graph - First Checkpoint, Green Graph - Last Checkpoint

TD3: Divergence

Tensorboard

Orange Graph - First Checkpoint, Blue Graph - Last Checkpoint

Test 1: TD3 [64, 32]

Test 2: TD3 [64, 32]

Test 3: TD3 [64, 32]

Test 4: TD3 [64, 32]

Test 5: TD3 [64,32]

Aurora: SAC

● RL Algorithm: Soft Actor Critic
● Architecture (of NN): [64, 32]
● History Length: 10
● Features:
● Gamma: 0.99
● Soft Actor Critic: SAC is an off-policy maximum entropy deep reinforcement

learning with a stochastic actor. SAC incorporates the double Q-learning trick
from TD3. A key feature of SAC, and a major difference with common RL
algorithms, is that it is trained to maximise a trade-off between expected return
and entropy, a measure of randomness in the policy.

SAC [64, 32]: Training Statistics

SAC: Divergence

Test 1: SAC [64, 32]

Test 2: SAC [64, 32]

Test 3: SAC [64, 32]

Test 4: SAC [64, 32]

Test 5: SAC [64,32]

Multi-Objective: Reward Engineering

Reward is a linear combination of throughput, latency, loss

How does the performance change with the individual weights

Reward in earlier experiments: 10*throughput - 1000*latency - 2000*loss

High throughput (expected): 20*throughput - 1000*latency - 2000*loss

Low latency (expected): 5*throughput - 1000*latency - 2000*loss

PPO [64, 32] HighT: Training Statistics

Blue graph - First Checkpoint, Pink graph - Last Checkpoint

PPO [64, 32] HighT: Training Statistics

Test 1: PPO [64, 32] HighT

Test 2: PPO [64, 32] HighT

Test 3: PPO [64, 32] HighT

Test 4: PPO [64, 32] HighT

Test 5: PPO [64,32] HighT

PPO [64, 32] LowLat: Training Statistics

Blue Graph - First Checkpoint, Grey Graph - Last Checkpoint

PPO [64, 32] LowLat: Training Statistics

Test 1: PPO [64, 32] LowLat

Test 2: PPO [64, 32] LowLat

Test 3: PPO [64, 32] LowLat

Test 4: PPO [64, 32] LowLat

Test 5: PPO [64,32] LowLat

Roadblocks

● Code/libraries used are outdated
○ Python2 -> Python3
○ Tensorflow 1.14 -> Tensorflow 2+

● Outdated kernel issues with Orca and DeepCC
● All models trained on CPU

Further Avenues

● Model-based approaches
● Meta-Learning
● Reward Engineering
● Competitive Learning

References

[1] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, Aviv Tamar. A Deep Reinforcement Learning Perspective
on Internet Congestion Control. Proceedings of the 36th International Conference on Machine Learning, PMLR
97:3050-3059, 2019.

[2] Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai Chen, and Xin Jin. 2022. Multi-objective
congestion control. In Proceedings of the Seventeenth European Conference on Computer Systems (EuroSys '22).
Association for Computing Machinery, New York, NY, USA, 218–235. https://doi.org/10.1145/3492321.3519593

[3] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis, and Keith Winstein. 2018. Pantheon:
the training ground for internet congestion-control research. In Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC '18). USENIX Association, USA, 731–743.

[4] https://stable-baselines.readthedocs.io/en/master/index.html

[5] https://spinningup.openai.com/en/latest/index.html

