
Team Aerial Robotics

Indian Institute of Technology,
Kanpur

D.R.D.O. SASE’s UAV Fleet Challenge

Technical Report

Date of Submission:

January 10, 2020

1

Contents

1 About the Team 3
1.1 Past Work . 3
1.2 Past Competitions . 3

2 System Description 4
2.1 State Estimation . 4
2.2 Control System . 4

2.2.1 Low-level PID Controller: . 5
2.2.2 High-level NMPC controller: . 5

3 Approach and Module-wise Division of Tasks 6
3.1 Autonomous Takeoff and Landing . 6
3.2 Exploration . 6
3.3 Object Detection . 7

3.3.1 Segmentation . 7
3.3.2 Contour Processing . 7
3.3.3 Location Estimation . 9

3.4 Swarm Technology . 10
3.5 Map Generation . 10

4 Architecture 12
4.1 Hardware . 12
4.2 Software . 12
4.3 Integration . 13

5 Supplementary Material and Contact Details 13

Bibliography 14

2

1 About the Team

We are a team of undergraduate students at the Indian Institute of Technology Kanpur,
working on the development of autonomous aerial vehicles, under the guidance of Dr.
Indranil Saha and Dr. Mangal Kothari.
We have participated at various national/international aerial robotics competitions, few
of our past achievements include the 6th and 7th Inter IIT Tech Meet and the Interna-
tional Micro Aerial Vehicle (IMAV) Outdoor Challenge held in October 2019 in Madrid,
Spain.
Apart from this, the team works towards contributing to the global open source robotics
community and implementing various industrial challenges.

1.1 Past Work

Our team has worked with state-of-the-art techniques in the domain of aerial vehicles,
including the field of controls, localization and mapping. Few of our major projects
include:

• Controllers

– PID Controller

– Nonlinear Model Predictive Controller (NMPC) (1)

• Localization

– Visual-Inertial Odometry (VIO): We used the Intel Real Sense Camera for
feature detection and subsequent indoor localization using the ROVIO (2)
algorithm.

• Swarm Communication

– We implemented a long-range communication link (2 km omni-directional
range), to achieve Wi-Fi connectivity among the quadcopters which shared
data via the Multimaster setup.

1.2 Past Competitions

• 3rd Position, Warehouse Inventory Check :: 6th Inter IIT Tech Meet, IIT Madras
(3) (4)

• 2nd Position, PlutoX Hackathon :: 7th Inter IIT Tech Meet, IIT Bombay

• International Micro Aerial Vehicle (IMAV) Competition 2019 :: Outdoor Chal-
lenge, Madrid, Spain: The problem statement involved three major components:
(a)Detection, (b)Delivery and (c)Mapping. Swarm technology was to be employed
to achieve this in an area of 30,000 m2.

3

https://cse.iitk.ac.in/users/isaha
https://cse.iitk.ac.in/users/isaha
https://www.iitk.ac.in/aero/mangal/

2 System Description

(a) MAV-1: A system with
heavy payload carrying

capabilities, equipped with
NVIDIA Jetson TX2

(b) MAV-2: A system capable
of high speed surveying

equipped with RTK-GPS and
an OCam Camera

(c) MAV-3: A system capable
of detection and delivery,

equipped with NVIDIA Jetson
TX2, OCam and servo

grippers

Figure 1: Prototype Systems

2.1 State Estimation

Accurate and robust state estimation is the most crucial element in the execution of
fast and precise trajectories, which is essential for solving this challenge. The MAVs use
GPS for horizontal position estimation and a LiDaR for height estimation. For velocity
estimation, the MAVs use fusion of attitude (provided from the on-board IMU) and
position data. For rotational degrees of freedom, the MAVs use on-board IMUs with
sensor fusion using an Extended Kalman Filter (EKF) algorithm provided by the PX4
autopilot (5).

2.2 Control System

The system uses a two-level cascade controller as shown in Figure 2:

Figure 2: Control architecture of the MAV. The high-level NMPC controller takes a
trajectory as input, and outputs roll (φ), pitch(θ), yaw-rate(ψ̇) and thrust(τ)

commands. A low-level controller runs on attitude feedback and commands the motor
speed.

4

2.2.1 Low-level PID Controller:

The low-level controller runs on an STM32F processor that provides on-board attitude
estimation at a high frequency (200 Hz). It also communicates with sensors and the
on-board computer through a MAVLink (6) architecture provided by PX4.

2.2.2 High-level NMPC controller:

If the need arises, in order to handle robust and complex maneuvers, a Non-Linear Model
Predictive Controller will be used.
For an optimal controller, system identification is the primary requirement. After getting
an estimate of the system dynamics, the controller solves a constraint optimization
problem and produces the necessary control inputs. Our system uses the ACADO Toolkit
(7) to solve the NMPC.
We first define the following state vector:

x =
(
pT vT φ θ ψ

)T
, (1)

where p is the position vector, v is the velocity vector and φ, θ and ψ represent the roll,
pitch and yaw respectively.
and the control input vector:

u =
(
φcmd θcmd ψ̇cmd τcmd

)T
(2)

Now, we can define the Optimal Control Problem (the optimization problem that is
solved by the controller) as follows:

min
U ,X

∫ T

t=0

(
‖x(t)− xref (t)‖2Qx

+ ‖u(t)− uref (t)‖2Ru
dt

)
+ ‖x(T)− xref (T)) ‖2P

subject to ẋ = f(x,u);

u(t) ∈ U
x(0) = x (t0) .

(3)

where f(x, u) is the nonlinear system dynamics obtained via system identification,
Qx � 0, Ru � 0 and P � 0 are the respective penalties on the errors for the state,
control input and final state,
xref , and uref are the target state vector and target control input at time t,
U is the control input constraint given by U ∈ {−ū, ū}, and
T is the prediction horizon for the given cost function.

The controller is implemented in a receding horizon fashion as explained in (1), where
the aforementioned optimization problem needs to be solved at every time step and only
the first control input is actually applied to the system.

5

3 Approach and Module-wise Division of Tasks

The complete problem statement would be accomplished using three MAVs. Initially
after autonomous takeoff, all of the MAVs execute a predefined trajectory in search of
the boxes. Each MAV detects the boxes independently and relays the box coordinates
to the ground station. Count of detected objects will be shared with each MAV. Once
four boxes are detected, the MAVs initiate landing. The whole task is divided into dis-
crete submodules, which are then integrated into a complete end-to-end solution with a
finite state machine which is written using the MSM library (8) (one of the Boost C++
libraries).

Figure 3: State Machine Diagram

The finite state machine serves as the bridge
between all the different modules, by providing
transition functions to switch between mod-
ules, action functions to execute the corre-
sponding modules within each state and guard
functions to prevent transition between mod-
ules in case of any errors. At any given time
during the execution of the mission, the MAV
can be in any one of the following states:

Rest: The MAV is in a state of rest - disarmed
and on the ground.

Hover: The MAV is hovering over a fixed
point at a fixed height.

Exploring: The MAV is exploring the mission
area and is collecting the position data of all
the objects.

ReachLZ: The MAV is enroute to the Landing Zone (LZ).

A brief description of all the submodules is as follows:

3.1 Autonomous Takeoff and Landing

This module handles the autonomous takeoff procedure. At the start of the mission,
high-level commands are sent to the controller to achieve takeoff. At the time of landing,
the module achieves controlled descent by sending required high-level commands using
height estimate as feedback.

3.2 Exploration

This module includes the commands and trajectories that the MAVs would be following
in order to collect data for object detection. Once this state is activated after the takeoff,
the MAVs follow a pre-optimized trajectory to survey the arena, and publish the location

6

of the found objects during the same. The trajectories are deployed to the systems via
QGroundControl (9), and are optimized to capture maximum area in minimum distance
and time. The field of view of the camera is taken into account for the height and
distance between adjacent passes. The complete geometric area of the arena is divided
into polynomial segments (10) for each MAV in a collision free manner.

3.3 Object Detection

The purview of this module extends to the detection of boxes seen by the MAVs during
the exploration of the arena. This module takes live image streams from the camera
mounted on the MAVs and processes it to find potential candidates for the target boxes.
Then, a series of checks are used to narrow it down to the target boxes alone. To prevent
re-detection of same boxes, the MAVs compare the GPS coordinates of the new objects
with those of the previously detected boxes.

3.3.1 Segmentation

Since the image obtained from the fish-eye camera is distorted, it is passed through
an undistort function that takes the image and the camera model as the input, and
outputs an undistorted image. The image is then converted to the HSV color space and
a thresholding algorithm is applied to obtain only the pixels of a certain color. Contours
are then extracted from the binarized image and further processed.

3.3.2 Contour Processing

The contours previously obtained are first checked for a minimum pixel count. Contours
smaller than this minimum are discarded. The centre of the contour is obtained and
then the corners are found by computing the convex hull of the contour as in Algorithm 1
and then removing the outliers as specified in Algorithm 3. Firstly, we compare the area
enclosed by the hull and the total area of the segment (For a convex polygon these must
be almost equal). Secondly, since dimensions of the boxes are much smaller than the
height from which they are viewed, the boxes will appear as quadrilaterals (hexagons at
most). So we compare the lengths of the diagonals of the segment, for a regular polygon
these must almost be equal. Contours that are valid after these checks are added to a
vector of valid objects, which is the final output of the object detection algorithm.

Figure 4: Captured Image of a green object along with estimated pose of camera

7

Algorithm 1 Object Detection Algorithm

Input : src - Input image
Output: hulls - Array of detected object centres
thresh img = HSVthreshold(src) // The input image is thresholded using

the HSV parameters of required target to obtain a binary image

thresh img = MorphOpen(thresh img) // A morphological opening operation

is applied on the binary image to eliminate noise

list contours = findContours(thresh img) // The contours are then extracted

initialize hulls with size = contour.size() and all values = 0
for i = 0 to i = contour.size()− 1 do

if contourArea(list contours.at(i)) > MinContourArea then
hulls.at(i) = ConvexHull(list contours.at(i))// The ConvexHull returns

indices of detected hull points

corners = OutlierFilter(list contours.at(i), hulls.at(i))
if corners.size()==4 then return corners; // Only allow quadrilaterals

end if
else

skip contour
end if

end for

Algorithm 2 Curvature

Input : contour - contour, point index - index of the point in the contour whose
curvature is being calculated

Output: curve - Measure of curvature at a point used to characterize corners
δ = contour.size()/8 // For a square

left vec = contour.at(point index)− contour.at(point index− δ)
right vec = contour.at(point index)− contour.at(point index+ δ)
curve vec = contour.at(point index− δ)− contour.at(point index+ δ)
curve = MagnitudeofCrossProduct(left vec, right vec)
curve = curve/Norm(curve vec))
return curve;

8

Algorithm 3 Outlier Filter

Input : hull - detected hull, contour - detected contours
Output: corners - corners after exclusion of false detected hull points
xmax = 0
ymax = 0
initialize curvature with size = contour.size() and all values = 0
initialize max with size = contour.size() and all values = 0
δ = contour.size()/8 //For a square
for i = 0 to i = hull.size()− 1 do
curvature.at(hull.at(i)) = Curvature(contour.at(hull.at(i)))

end for
for i = 0 to i = contour.size()− 1 do
if curvature.at(i) > curvature.at(i + 1)&&curvature.at(i) > curvature.at(i − 1)
then
max.at(i) = curvature.at(i)

end if
end for
for i = 0 to i = contour.size()− 1 do

for j = i− δ to j = i+ δ do
if max.at(j) == 0 then

continue;
end if
if max.at(j) > ymax then
xmax = j
ymax = Curvature(contour.at(j))

end if
end for

end for
for i = 0 to i = max.size()− 1 do
if max.at(i)! = 0 then
corners.push back(contour.at(i)

end if
end for
return corners;

3.3.3 Location Estimation

Once the object detection algorithm produces a vector containing all the data (i.e of
valid objects, the height data from the LiDaR sensor and the camera model is used
to calculate matrices that transform coordinates from the image frame into the camera
frame, then into the MAV frame and finally into the global frame. These coordinates
are then relayed to the ground station for map generation and also relayed to the other
MAVs.

9

3.4 Swarm Technology

All the MAVs are connected to a WiFi network with independent ROS12 Masters running
onboard each MAV. All the three MAVs are interconnected in the ROS network with
the ground station by the use of the FKIE Multimaster13 setup. The count of the boxes
detected is published on a ROS topic continuously. This data is read by the other MAVs
and ground station. Apart from the objects, each MAV continuously shares its own
position which is estimated in local coordinate frame by other UAVs and if probability
of collision arises, the MAVs change their own trajectories to safely avoid the same. Apart
from these data any other crucial information can be shared as per the requirement.

Figure 5: Swarm Network Diagram

3.5 Map Generation

For dynamic map generation, the Bing Maps API c© is used to generate an aerial image
of the field. An empty map image is stored locally before the mission. The router table
is constantly queried by a ROS node during the mission to check for coordinates of new
objects. As soon as an object is detected, the ROS node marks the point on the map.
Using the center coordinates of the map, the scale, and some geodesic calculations, the
pixel coordinates of the point to be marked is obtained. Then the node updates the
map locally, and calls a service to another node which then loads the new image and
publishes it
For static map generation, the python module named folium is used to generate a web
page with the map and the markers denoting the locations and GPS coordinates of the
objects, once the mission is over.

10

(a) Map stored offline at the ground station (b) Detected objects marked on the map

Figure 7: Detected objects marked on the map, generated using Folium

11

4 Architecture

4.1 Hardware

Figure 8: Complete Hardware
Architecture

All the MAVs have a custom carbon fibre sym-
metric ‘X’ quadrotor configuration frame with the
following components (and other basic flight hard-
ware):
Computational Units: The MAVs are mounted
with NVIDIA Jetson TX2.
Vision System: The MAVs are mounted with
OCam 5MP Cameras for object detection.
Flight Controller: Each system includes a Pix-
hawk 2.1 Cube Flight Controller.
Sensors: The MAVs are also equipped with
the Here+ GPS with RTK capabilities and a
Rangefinder for Height estimation.
Propulsion System: TMotor high efficiency Propulsion system.

4.2 Software

The software architecture on the NVIDIA Jetson TX2 includes data processing from the
sensors, the finite state machine and the computer vision algorithms. The commands
for the mission mode are sent to the low level PID controller, which then executes the
command. The nadir camera provides the images to the box detection pipeline which
outputs the box coordinates. All these states of the system are managed by the finite
state machine. Please refer to Figure 9a for a complete software overview.

Figure 9: (a) Complete Software Architecture Figure 9: (b) ROS Integration

12

4.3 Integration

The complete framework is integrated by the Robot Operating System (ROS) (11). All
the three MAVs and the Ground station are interconnected in the ROS network by the
use of FKIE Multimaster (12) setup, which provides a method to run independent ROS
masters on each of the systems in contrast to the single master systems, keeping other
systems intact in case of a network failure. Figure 9b shows the ROS network of the
system.

5 Supplementary Material and Contact Details

Feel free to contact us! We will be really happy to hear from you, be it about discussion
of some new idea for a technology transform or about your support that can immensely
help us.

Mail: aerialroboticsiitk@gmail.com
GitBook Documentation : https://aerial-robotics-iitk.gitbook.io/aerial-robotics-iitk/
Github : https://github.com/AerialRobotics-IITK/
YouTube : https://www.youtube.com/channel/UC0A50yxfhMAYRSOMTG87o6A

Contact Us:

Pence Mataria
(Team Head)
9727799001
pencem@iitk.ac.in
GitHub: https://github.com/PenceMataria

13

https://aerial-robotics-iitk.gitbook.io/aerial-robotics-iitk/
https://github.com/AerialRobotics-IITK/
https://www.youtube.com/channel/UC0A50yxfhMAYRSOMTG87o6A?view_as=subscriber
https://github.com/PenceMataria

Bibliography

[1] Mina Kamel, Michael Burri, and Roland Siegwart. Linear vs Nonlinear MPC for Trajectory
Tracking Applied to Rotary Wing Micro Aerial Vehicles. 2016 corr. CoRR, abs/1611.09240,
2016.

[2] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual inertial odometry using
a direct ekf-based approach. 2015 ieee/rsj international conference on intelligent robots
and systems (iros). In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 298–304, Sep. 2015.

[3] M. Bhargavapuri, J. Patrikar, S. R. Sahoo, and M. Kothari. A low-cost tilt-augmented
quadrotor helicopter : Modeling and control. 2018 international conference on unmanned
aircraft systems (icuas). In 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), pages 186–194, June 2018.

[4] Krishnraj S. Gaur, Hardik Parwana, Ajay Bhatt, Gaurav Pandey, and Mangal Kothari. Low
Cost Solution for Pose Estimation of Quadrotor. 2018 AIAA Information Systems-AIAA
Infotech @ Aerospace.

[5] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A node-based multithreaded
open source robotics framework for deeply embedded platforms. 2015 ieee international
conference on robotics and automation (icra). 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 6235–6240, 2015.

[6] MAVlink (2014) MAVlink messenger protocol. Website. Website. [Online] http://mavlink.
org.

[7] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. ACADO toolkit - an open-source
framework for automatic control and dynamic optimization. 2010 optimal control applica-
tions and methods. Optimal Control Applications and Methods, 32(3):298–312, may 2010.

[8] Boost meta state machine (msm) library. Website. Website. [Online] https://www.boost.
org/doc/libs/1_64_0/libs/msm/doc/HTML/index.html.

[9] Lorenz Meier and MAVLink developer team. QGroundControl: Cross-platform ground
control station for drones. Website. http://qgroundcontrol.io/, 2014–2019.

[10] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory planning for aggressive
quadrotor flight in dense indoor environments. 2016 robotics research, springer. In Robotics
Research, pages 649–666. Springer, 2016.

[11] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric
Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating system. 2009
proc. of the ieee intl. conf. on robotics and automation (icra) workshop on open source
robotics. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, May 2009.

[12] Alexander Tiderko, Frank Hoeller, and Timo Röhling. The ROS Multimaster Extension for
Simplified Deployment of Multi-Robot Systems. 2016 Robot Operating System (ROS): The
Complete Reference (Volume 1), Springer, pages 629–650. Springer International Publish-
ing, Cham, 2016.

14

http://arxiv.org/abs/1611.09240
http://arxiv.org/abs/1611.09240
https://arc.aiaa.org/doi/abs/10.2514/6.2018-0466
https://arc.aiaa.org/doi/abs/10.2514/6.2018-0466
https://mavlink.io/en/
 http://mavlink.org
 http://mavlink.org
https://www.boost.org/doc/libs/1_64_0/libs/msm/doc/HTML/index.html
https://www.boost.org/doc/libs/1_64_0/libs/msm/doc/HTML/index.html
https://www.boost.org/doc/libs/1_64_0/libs/msm/doc/HTML/index.html
https://qgroundcontrol.io
http://qgroundcontrol.io/

	About the Team
	Past Work
	Past Competitions

	System Description
	State Estimation
	Control System
	Low-level PID Controller:
	High-level NMPC controller:

	Approach and Module-wise Division of Tasks
	Autonomous Takeoff and Landing
	Exploration
	Object Detection
	Segmentation
	Contour Processing
	Location Estimation

	Swarm Technology
	Map Generation

	Architecture
	Hardware
	Software
	Integration

	Supplementary Material and Contact Details
	Bibliography

