
DRDO DGRE’s Vision Based
Obstacle Avoidance Drone

Project Documentation

Team Number 16

24 March 2021

Contents

1 Installation and Setup Instructions 3

1.1 Pre-Installation Assumptions . 3

1.2 Installing Dependencies . 4

1.3 Running the Simulation . 6

1.4 Version Information for Dependencies . 7

1.5 Changes in provided Model Files . 8

1.6 Possible Fixes for Potential Build Issues 8

2 Overall Approach and Algorithm Description 10

2.1 Autonomous Takeoff and Landing . 10

2.2 Map Generation . 10

2.3 Frontier Selection . 11

2.4 Path Finding . 12

2.5 Marker Detection . 14

2.6 Fixes in Frame Tree Structure . 15

3 Software Architecture Description 16

3.1 rqt graph . 16

3.2 Parameter Files . 16

3.2.1 active planner . 16

3.2.2 box detector . 16

3.2.3 explorer . 16

3.3 Nodes . 17

1

3.3.1 voxblox local planner . 17

3.3.2 voxblox node . 17

3.3.3 explorer node . 18

3.3.4 quadrotor/box detector node . 18

4 References 19

2

1 Installation and Setup Instructions

1.1 Pre-Installation Assumptions

The following instructions assume that the system has a working
installation of Ubuntu 18.04 with ROS Melodic and Gazebo 9.
Further, the Ardupilot Stack and the ardupilot gazebo have also
been properly installed. We will be using the catkin build system
instead of catkin make. The following workspace structure was
maintained during development:
Instructions followed for installing Ardupilot Stack and ardupi-
lot gazebo plugins are reproduced below for verification:

$ mkdir -p ~/drdo_ws/src

$ cd ~/drdo_ws/src

$ git clone https://github.com/Ardupilot/ardupilot

$ cd ardupilot

$ git submodule update --init --recursive

$ Tools/environment_install/install-prereqs-ubuntu.sh -y

$ sudo apt-get install genromfs

To avoid having to restart the system we move the changes made by the script in
~/.profile to ~/.bashrc and verify the paths mentioned by it. Further we remove the
following line from the bashrc file since it is not available on the branch:

$ source $HOME/drdo_ws/src/ardupilot/Tools/completion/completion.bash

Next, we shift to the recommended firmware branch - 3.6 and build it. Within the
ardupilot directory,

$ source ~/.bashrc

$ git checkout Copter-3.6

$ git submodule sync

$ git submodule update --init --recursive

$./waf configure --board px4-v3

$./waf copter

Next, we install the ardupilot gazebo package as follows:

3

$ cd ~/drdo_ws/src

$ git clone https://github.com/khancyr/ardupilot_gazebo.git

$ cd ardupilot_gazebo

$ git checkout dev

$ mkdir build

$ cd build

$ cmake ..

$ make -j4

$ sudo make install

If mavros is not installed, it can be installed as follows:

$ sudo apt-get install ros-melodic-mavros

$ ros-melodic-mavros-extras

$ cd /opt/ros/melodic/lib/mavros

$./install_geographiclib_datasets.sh

1.2 Installing Dependencies

First, install the following additional system dependencies:

$ sudo apt-get install python-wstool python-catkin-tools \

$ ros-melodic-cmake-modules protobuf-compiler autoconf \

$ libboost-dev libeigen3-dev libgoogle-glog-dev

$ pip install protobuf

Next, we create a new catkin workspace, if not already done:

$ mkdir -p ~/drdo_ws/src

$ cd ~/drdo_ws

$ catkin init

$ catkin config --extend /opt/ros/melodic

$ catkin config --cmake-args -DCMAKE_BUILD_TYPE=Release

Note: We installed the Ardupilot stack and plugins within the same workspace, however
this is not necessary and will not affect the working of the submission (provided the paths
of the installation are properly set where required) since these are not built with catkin.

4

To ensure the neither folder interferes with the catkin build process, please add a file
named CATKIN IGNORE within the two folders:

$ cd ~/drdo_ws/src

$ cd ardupilot

$ touch CATKIN_IGNORE

$ cd ../ardupilot_gazebo

$ touch CATKIN_IGNORE

Place the provided package folder (i.e. the submission) into the src folder. We will install
external dependencies using wstool. The libraries are downloaded from GitHub via SSH,
hence please ensure that SSH keys have been setup on the system by following this link.

$ cd ~/drdo_ws/src

$ wstool init . inter_iit_dgre_voad/install_ssh.rosinstall

$ wstool update

If in case wstool says it has already been initialized, just replace wstool init with
wstool merge -t in the above instructions

The submission depends on the following ROS packages. Use the following command
to ensure all of them are installed. Most of these will already be installed, however all
packages have been mentioned here just to be sure.

$ sudo apt-get install ros-melodic-std-msgs ros-melodic-std-srvs \

ros-melodic-geometry-msgs ros-melodic-mavros-msgs ros-melodic-nav-msgs \

ros-melodic-message-generation ros-melodic-message-runtime \

ros-melodic-tf2-ros ros-melodic-cv-bridge ros-melodic-tf \

ros-melodic-tf-conversions ros-melodic-eigen-conversions \

ros-melodic-sensor-msgs ros-melodic-image-transport \

ros-melodic-cv-bridge ros-melodic-visualization-msgs \

ros-melodic-pcl-ros ros-melodic-pcl-conversions \

ros-melodic-interactive-markers ros-melodic-trajectory-msgs

Once all dependencies have been satisifed, build the workspace:

cd ~/drdo_ws/src

catkin build

Note: In case there are any installations issues, please use the contact details mentioned
in the README.md file provided with the package.

5

https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

1.3 Running the Simulation

After ensuring that all 27 packages in the workspace have been built successfully (with
non-fatal warnings), run the simulation using the following two launch files:

• roslaunch explorer default.launch world_name:=testing_world1

(By changing the world name argument(testing world1/testing world2/testing world3)
you can change the world to be tested.)

• Wait for GPS lock(it should take about 1-2 min for this)

• roslaunch explorer explorer_node.launch

This launch file will launch the explorer node and rviz.

Now the drone will autonomously explore and land on the specified marker.

NOTE: Our algorithms and simulation code are according to the given orientation of
camera and quad models (given on 23 March 11:30PM). So for running the simulation,
we request the judges not to change any model orientations while evaluation, if at all
possible. Kindly use the copy of the provided worlds and models to run the simulation
as those are in sync with our testing configuration.

An RViz visualization file has also been provided. This is just for debugging and obtain-
ing additional information and will increase computation considerably. This is disabled
by default since it is not relevant for evaluation. To enable this:

• Uncomment the rviz node line in explorer node.launch

• Set visualize frontier to true in active planner/cfg/frontier params.yaml to visual-
ize frontier generation related topics

• Set visualize planner to true in active planner/cfg/params.yaml to visualize pathfinder
related topics

• Set visualize path to true in active planner/cfg/params.yaml to visualize pathfinder
related topics

6

• Set publish pointclouds to true in active planner/cfg/voxblox params.yaml to vi-
sualize ESDF/TSDF map related topics

Set verbose planner to true in active planner/cfg/params.yaml to disable terminal out-
put. It is set to true by default to enable the user to understand what the planner is
currently upto.

1.4 Version Information for Dependencies

ROS Version: melodic 1.14.10

Gazebo Version: 9.16.0

Pip Version : 20.3.4

Pip3 Version : 21.0.1

Kernel Version: 5.4.0-67-generic

Commit IDs for git installed dependencies: ArduPilot : Copter-3.6
All other repositories use the main or master branch.

Versions for additional system installed dependencies:

python-wstool : 0.1.17-1
python-catkin-tools : 0.6.1-1
ros-melodic-cmake-modules : 0.4.2-0bionic.20201015.021712
protobuf-compiler : 3.0.0-9.1ubuntu1
autoconf : 2.69-11
libboost-dev:amd64 : 1.65.1.0ubuntu1
libeigen3-dev : 3.3.4-4
libgoogle-glog-dev : 0.3.5-1

The following dependency versions are the default versions.
Version for ROS binary installed dependencies:

ros-melodic-mavros-msgs : 0.5.12-0bionic.20201017.034204
ros-melodic-std-srvs : 1.11.2-0bionic.20201017.034224
ros-melodic-geometry-msgs : 1.12.8-1bionic.20210112.173042
ros-melodic-nav-msgs : 1.12.8-1bionic.20210112.173737
ros-melodic-message-generation : 0.4.1-1bionic.20201017.033327
ros-melodic-message-runtime : 0.4.12-0bionic.20201017.033232
ros-melodic-tf2-ros : 0.6.5-0bionic.20210112.183245
ros-melodic-cv-bridge : 1.13.0-0bionic.20210112.181516

7

ros-melodic-tf : 1.12.1-1bionic.20210112.183814
ros-melodic-tf-conversions : 1.12.1-1bionic.20210112.190235
ros-melodic-eigen-conversions : 1.12.1-1bionic.20210112.180039
ros-melodic-sensor-msgs : 1.12.8-1bionic.20210112.173755
ros-melodic-image-transport : 1.11.13-0bionic.20210112.181401
ros-melodic-visualization-msgs : 1.12.8-1bionic.20210112.173714
ros-melodic-pcl-ros : 1.7.1-1bionic.20210112.185053
ros-melodic-pcl-conversions : 1.7.1-1bionic.20210112.181845
ros-melodic-interactive-markers : 1.11.5-1bionic.20210112.190840
ros-melodic-trajectory-msgs : 1.12.8-1bionic.20210112.180155

1.5 Changes in provided Model Files

Following changes in the file drone with depth camera/model.sdf:

• line 43: update rate tag of depth camera sensor changed from 10.0 to 20.0

• line 47: horizontal fov tag changed from 1.047198 to 2 : We increase the
horizontal fov of our depth camera to receive more points or simply to get better
maps

• line 54: near tag under depth camera sensor changed from 0.1 to 0.01 : done to
augment the pointcloud to get nearer points as well

• line 59: baseline tag in depth controller plugin changed from 0.2 to 0.11

• line 71: pointCloudCutoffMax tag changed from 3.0 to 10.0 : increased range
of the point-cloud which allows us to plan farther and faster

1.6 Possible Fixes for Potential Build Issues

• ArduPilot does not build completely. We can use the following command instead of
”catkin build”. Note that building ArduPilot with catkin is absolutely unnecessary
since it has its own independent build system.

$ catkin build --continue-on-failure

• Error in building numpy eigen

8

To solve this copy the contents of the file: add python export library.cmake to that
same file ie. catkin boost python buildtool/catkin boost python buildtool/cmake/
add python export library.cmake, then try building it again.

• No downward camera topic
Try deleting gimbal small 2d model in ∼ /.gazebo/models

9

https://github.com/ethz-asl/catkin_boost_python_buildtool/blob/1970cbe57bd37e76c8aa65a17f546860a8c92559/catkin_boost_python_buildtool/cmake/add_python_export_library.cmake

2 Overall Approach and Algorithm Description

2.1 Autonomous Takeoff and Landing

We have utilized ROS Services and Service Clients for takeoff and landing. For
executing the same the following services are being called sequentially:

For takeoff :

• ”/mavros/cmd/arming” - This arms the drone enabling takeoff.

• ”/mavros/cmd/set mode” - Using this we are setting the drone in ”GUIDED”
mode, allowing it to take setpoints.

• ”/mavros/cmd/takeoff” - This service initiates takeoff with the specified takeoff
altitude and yaw.

For landing :

• Logic : If the absolute distance between the estimated marker centre(in global
frame) and the drone in x and y direction is less than or equal to 0.25 units
call the landing service. This ensures that the drone lands on the marker more
accurately.

• ”/mavros/cmd/land” - Similar to the takeoff service this land the drone on its
current position or a specified position.

2.2 Map Generation

We use Voxblox for map generation. Voxblox is a volumetric mapping library based
mainly on Truncated Signed Distance Fields (TSDFs).

10

The system functions in two parts: first, incorporating incoming sensor data into a
TSDF, and then propagating updated voxels from the TSDF to update the ESDF.
Sensor data from stereo or RGB-D sensors comes in as colored pointclouds,which are
then integrated into the TSDF. The ESDF is then updated by propagating changes from
the TSDF.

For computational feasibility for exploration, the library uses a dynamically sized map
that makes use of voxel hashing. This allows the use of hash table for fast mapping
between block positions and their locations in memory.

2.3 Frontier Selection

A frontier is defined as a voxel that has more than one occupied neighbour. We iterate
over all TSDF voxels to calculate all the frontier points, and then recursively cluster
them together. The center of each frontier cluster is used as a potential waypoint for
the path finder. In each planning iteration, the frontier centers are calculated from the

11

current TSDF map.

Out of these frontier centers, the one the lies the farthest along the direction that the
quadrotor is currently facing is selected as the next waypoint for the planner. The
current frontiers are then stored in a hash map to ensure that no frontier is visited again
in subsequent planning iterations.

In case there are no visible frontiers, the quadrotor executes a routine where it spins
around and changes its height from 4.0 to 1.0 before returning to its original odometry
position, to develop the map in the surroundings.

2.4 Path Finding

Given a starting point (generally set to the current position of the quadrotor), and an
endpoint (the next waypoint), the path is calculated by generating a random graph and

12

running A* on said graph. Using the start and end point as reference, a sampling box
is defined along the line connecting both these points with specified width and height.
Points are sampled in this sampling box, and added into a graph. Then the graph is
connected by constructing an RTree and finding the 4 nearest neighbours for each point
in the graph.

Once the path is generated, it is shortened by checking each pair of points for a free
path in between. If a free path exists, the intermediate points are deleted. The pairs
are checked in a divide and conquer fashion. Once the shortened path is generated, it is
published to MAVROS and tracked in the planner node.

If the pathfinder fails to generate a path, a second attempt is made after increasing both
the sampling density and the size of the sampling box. If a path is still unfeasible, a last
attempt is made by trying to find a path to the point nearest to the end waypoint. If
even this fails, the waypoint is marked infeasible and no path is returned.

As the path is being followed, the planner regularly looks at the next 4 waypoints and

13

checks them for the appearance of any obstacles on the path. If there is an obstacle, we
query the pathfinder again to check if a replanned path is feasible. If it is, the waypoint
is sent again, otherwise it is discarded and a new frontier is obtained.

2.5 Marker Detection

Aruco marker detection and pose estimation is being carried out in our node using the
in-built openCV aruco module.

• Detection : The dictionary to be detected has a specification of 5x5 1000(ie. 1000
markers of 5x5 bits). For this we are using the cv::aruco::detectMarkers() function
to get the markerIds, rejectedCandidates and corresponding marker corners.

• Centre estimation : After obtaining the markerIds we can look up the corners
corresponding to the required Id and take their average to get the marker centre.

• Pose estimation : Using the cv::aruco::estimatePoseSingleMarkers() function
withe the estimated centre coordinates as input we get the camera-frame coordi-
nates of the centre. By performing cam-to-quad and quad-to-mavros frame trans-
formations on the camera-frame coordinates we obtain the map-frame(global) co-
ordinates of the required aruco marker.

14

2.6 Fixes in Frame Tree Structure

The tf tree formed between the links was incorrect due to incorrect/non-existent trans-
formations between the camera link optical, base link and map. Rectification of this
was done as follows:

• Used a static transform publisher between base link and camera link optical
with a transformation of (0 0 0 -1.57 0 -1.57)

• Wrote a simple tf static broadcaster in which we use the odometry from mavros
and publish the frame transformations between map and base link via tf.

The final tf tree is as follows:

15

3 Software Architecture Description

3.1 rqt graph

3.2 Parameter Files

The parameter files being used are:-

3.2.1 active planner

• frontier params.yaml - Parameters for frontier exploration

• params.yaml - General robot and debug parameters

• voxblox params.yaml - Parameters for the voxblox server

3.2.2 box detector

• params.yaml - Parameters specifying camera properties and position

3.2.3 explorer

• params.yaml - Single parameter for verbose output

16

3.3 Nodes

The nodes being run are as follows:-

3.3.1 voxblox local planner

Subscribed topics:-

• /esdf map - Gets the ESDF map generated by the Voxblox server

• /tsdf map - Gets the TSDF map generated by the Voxblox server

• /mavros/local position/odom - Subscribes to the current position of the quadrotor

Published topics:-

• /voxblox local planner/trajectory - Visualize generated trajectory

• /voxblox local planner/frontier centers - Visualize frontier centers

• /voxblox local planner/occupied path - Visualize occupied waypoints on trajectory

• /voxblox local planner/frontiers - Visualize frontier points

• /voxblox local planner/free path - Visualize free waypoints on trajectory

• /voxblox local planner/occupied nodes - Visualize occupied nodes in ESDF map

• /mavros/setpoint position/local - Publishes the setpoints that the quadrotor has
to reach

Services served:-

• activate - Starts the planning loop

• shutdown - Shuts the planner down

3.3.2 voxblox node

Subscribed topics:-

• /depth camera/depth/points - Subscribes to the point cloud obtained from the
depth camera

Published topics:-

• /esdf map - Publishes ESDF map for the planner

• /tsdf map - Publishes TSDF map for the planner

17

3.3.3 explorer node

Subscribed topics:-

• /mavros/local position/odom - Subscribes to the current position of the quadrotor

• /mavros/state - Subscribes to the current state of the quadrotor

• /quadrotor/box detector node/global coord - Subscribes the coordinates of the de-
tected ArUco marker (having id=0) in the world frame

• /quadrotor/box detector node/centre - Subscribes the pixel coordinates of the de-
tected ArUco marker (having id=0) in the image frame.

Published topics:-

• /mavros/setpoint position/local - Publishes the setpoints that the quadrotor has
to reach

• /Aruco/message - Publishes the status of marker detection

3.3.4 quadrotor/box detector node

This node detects the arUco marker and calculates the position of the arUco marker if
it has id 0.
Subscribed topics:-

• /mavros/local position/odom - Subscribes to the current position of the quadrotor

• /camera/color/image raw/image topics - Subscribes to the image from the down-
ward facing camera.

Published topics:-

• /mavros/setpoint position/local - Publishes the setpoints that the quadrotor has
to reach

• /quadrotor/box detector node/global coord - Publishes the coordinates of the de-
tected arUco marker (having id=0) in the world frame

• /quadrotor/box detector node/centre - Publishes the pixel coordinates of the de-
tected arUco marker (having id=0) in the image frame.

18

4 References

• For Takeoff : px4-docs

• For tf broadcaster : tf2-Tutorials

• Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan Nieto, and Roland Sieg-
wart, “Voxblox: Incremental 3D Euclidean Signed Distance Fields for On-Board
MAV Planning”, in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017.

• Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart, and
Juan Nieto, ”An Efficient Sampling-based Method for Online Informative Path
Planning in Unknown Environments”, in IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 1500-1507, April 2020

• Robust and Efficient Quadrotor Trajectory Generation for Fast Autonomous Flight,
Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu and Shaojie Shen, IEEE Robotics
and Automation Letters (RA-L), 2019.

• VoxBlox Repo : https://github.com/ethz-asl/voxblox

19

https://docs.px4.io/master/en/ros/mavros_offboard.html
http://wiki.ros.org/tf2/Tutorials/Writing%20a%20tf2%20static%20broadcaster%20%28C%2B%2B%29

	Installation and Setup Instructions
	Pre-Installation Assumptions
	Installing Dependencies
	Running the Simulation
	Version Information for Dependencies
	Changes in provided Model Files
	Possible Fixes for Potential Build Issues

	Overall Approach and Algorithm Description
	Autonomous Takeoff and Landing
	Map Generation
	Frontier Selection
	Path Finding
	Marker Detection
	Fixes in Frame Tree Structure

	Software Architecture Description
	rqt_graph
	Parameter Files
	active_planner
	box_detector
	explorer

	Nodes
	voxblox_local_planner
	voxblox_node
	explorer_node
	quadrotor/box_detector_node

	References

